10.1002/adsc.201900013
Advanced Synthesis & Catalysis
According to previous reports[3a,3b,6,7b] and control
experiments, a tentative mechanism was depicted in
Scheme 8. The first step of this transformation is the
formation of the tert-butoxy radical and NO radical
generated by homolysis of TBN.[6] Then, H
abstraction of the N–H bond by tert-butoxy radical
occurs to generate radical intermediate A,[6a] which is
in resonance with intermediate B stabilized by
electron withdrawing group (COOEt). The resulting
B then goes through an intramolecular radical
addition to give radical intermediate C, which can be
easily oxidized to vinyl cation D. The intermediate D
reacts with H2O to form the enolate adduct E,[8c]
which finally goes through further isomerization and
aromatization under the oxidation of dioxygen to give
the product 2a and H2O. However, the detailed
process of the mechanism is still challenging until
now.
Acknowledgements
We thank the National Science Foundation of China NSF
21402066 and the Natural Science Foundation of Jiangsu
Province (BK20140139) for financial support. Financial
support from MOE&SAFEA for the 111 project (B13025)
is also gratefully acknowledged.
References
[1] a) B. Baragaꢀa, N. R. Norcross, C. Wilson, A. Porzelle,
I. Hallyburton, R. Grimaldi, M. Osuna-Cabello, S.
Norval, J. Riley, L. Stojanovski, F. R. C. Simeons, P. G.
Wyatt, M. J. Delves, S. Meister, S. Duffy, V. M. Avery,
E. A. Winzeler, R. E. Sinden, S. Wittlin, J. A. Frearson,
D. W. Gray, A. H. Fairlamb, D. Waterson, S. F.
Campbell, P. Willis, K. D. Read, I. H. Gilbert. J. Med.
Chem. 2016, 59, 9672; b) N. Ramkumar, R. Nagarajan,
Org. Biomol. Chem. 2015, 13, 11046; c) I. Chaaban, O.
H. Rizk, T. M. Ibrahim, S. S. Henen, E.-S. M. El-
Khawass, A. E. Bayad, I. M. El-Ashmawy, H. A.
Nematalla, Bioorg. Chem. 2018, 78, 220; d) J. P.
Michael, Nat. Prod. Rep. 2008, 25, 166; e) M. G.
Banwell, Pure Appl. Chem. 2008, 80, 669; f) S. A. H.
El-Feky, Z. K. Abd El-Samii, N. A. Osman, J. Lashine,
M. A. Kamel, H. K. Thabet, Bioorg. Chem. 2015, 58,
104.
[2] a) K. C. Nicolaou, J. S. Chen, D. J. Edmonds, A. A.
Estrada, Angew. Chem., Int. Ed. 2009, 48, 660; b) A. L.
Lett. 1999, 1, 1953; c) J. B. Bharate, R. A.
Vishwakarma, S. B. Bharate, RSC Adv. 2015, 5, 42020;
d) P. Zhou, B. Hu, S. Zhao, Q. Zhang, Y. Wang, X. Li,
F. Yu, Tetrahedron Lett. 2018, 59, 3116; e) S. Yahya,
S. H. Beheshtiha, M. Majid, M. Dehghani, Mod. Chem.
Appl. 2016, 4, 195.
[3] a) K. K. Toh, S. Sanjaya, S. Sahnoun, S. Y. Chong, S.
Chiba, Org. Lett. 2012, 14, 2290; b) X.-F. Xia, L.-L.
Zhang, X.-R. Song, X.-Y. Liu, Y.-M. Liang, Org. Lett.
2012, 14, 2480; c) J. Zheng, Z. Li, L. Huang, W. Wu, J.
Li, H. Jiang, Org. Lett. 2016, 18, 3514; d) Y.
Matsubara, S. Hirakawa, Y. Yamaguchi, Z.-I. Yoshida,
Angew. Chem., Int. Ed. 2011, 50, 7670; e) Z. Wang, S.
Li, B. Yu, H. Wu, Y. Wang, X. Sun, J. Org. Chem.
2012, 77, 8615; f) S. Cai, J. Zeng, Y. Bai, X.-W. Liu, J.
Org. Chem. 2012, 77, 801; g) C. Gronnier, G.
Boissonnat, F. Gagosz, Org. Lett. 2013, 15, 4234; h) C.
E. Meyet, C. H. Larsen, J. Org. Chem. 2014, 79, 9835;
i) J. D. Neuhaus, S. M. Morrow, M. Brunavs, M. C.
Willis, Org. Lett. 2016, 18, 1562; j) L. Zhang, S. Chen,
Y. Gao, P. Zhang, Y. Wu, G. Tang, Y. Zhao, Org. Lett.
2016, 18, 1286; k) P. Zhang, L. Zhang, Y. Gao, G.
Tang, Y. Zhao, RSC Adv. 2016, 6, 60922.
Scheme 8. Proposed mechanism.
Conclusion
In conclusion, we have developed a metal-free TBN
induced radical oxidative annulation of 1,6-enynes or
in-situ formed 1,6-enynes for the efficient
construction
of
multi-substituted
quinoline
derivatives. This protocol allows the formation of
C−C and C−O bonds simultaneously through an
intramolecular radical cyclization/oxygen atom
insertion. This strategy using molecular oxygen as the
oxidant and H2O as the oxygen source under mild
reaction conditions makes this protocol particularly
sustainable and practical.
Experimental Section
General Procedure
The mixture of 1,6-enynes 1 (0.20 mmol) and TBN (0.40
mmol), TBAB (0.020 mmol, 10 mol%) were combined in
CF3CH2OH (4.0 mL) at 60°C for 30 min under 1 atm
dioxygen atmosphere. After the reaction, 6 mL water was
added to quench the reaction, and the resulting mixture
was extracted twice with DCM (2×10 mL). The combined
organic extracts were washed with brine, dried over
Na2SO4 and concentrated. Purification of the crude product
by flash column chromatography afforded the desired
product (petroleum ether/ethyl acetate as eluent (10:1-8:1)).
[4] Selected some reviews of radical cyclization: a) J.
Xuan, A. Studer, Chem. Soc. Rev. 2017, 46, 4329; b) U.
Wille, Chem. Rev. 2013, 113, 813; c) J.-R. Chen, X.-Q.
Hu, L.-Q. Lu, W.-J. Xiao, Acc. Chem. Res. 2016, 49,
1911; d) C. Liu, D. Liu, A. Lei, Acc. Chem. Res.
2014, 47, 3459; e) P. Xu, W. Li, J. Xie, C. Zhu, Acc.
Chem. Res. 2018, 51, 484; f) S. A. Morris, J. Wang, N.
Zheng, Acc. Chem. Res. 2016, 49, 1957; g) K. C.
5
This article is protected by copyright. All rights reserved.