3
Recyclability of the DES was examined for the benzylation of
phenol using benzyl bromide under optimized reaction
parameters. After completion, the reaction mixture was cooled to
room temperature and water (2mL) was added. The product was
extracted with ethyl acetate and DES was dried was under
vacuum at 80 °C. The reusability of the deep eutectic solvent was
tested for five consecutive cycles but a decrease in the catalytic
activity of DES was observed after the fourth cycle (Table 3).
References and notes
1. McKillop, A.; Fiaud, J. C.; Hug, R. P. Tetrahedron 1974, 30,
1379-1382.
2. Lissel, M.; Schimidt, S.; Neumann, B. Synthesis 1986, 5, 382-383.
3. (a) Srivastava, P.; Srivastava, R. Tetrahedron Lett. 2007, 48,
4489-4493; (b) Benaglia, M.; Cinquini, M.; Cozzi, F.; Tocco, G.
Tetrahedron Lett. 2002, 43, 3391-3393; (c) Albanese, D.;
Benaglia, M.; Landini, D.; Maia, A.; Lupi, V.; Penso, M. Ind. Eng.
Chem. Res. 2002, 41, 4928-4935; (d) Tamami, B.; Ghasemi, S. J.
Iran. Chern. Soc. 2008, 5, 26-32; (e) Chen, Z. X.; Xu, G. Y.;
Yang, G. C.; Wang, W. React. Funct. Polym. 2004, 61, 139-146;
(f) Denmark, S. D.; Weintraub, R. C.; Gould, N. D. J. Am. Chem.
Soc. 2012, 134, 13415-13429; (g) Coleman, M. T.; LeBlanc, G.
Org. Process Res. Dev. 2010, 14, 732-736; (h) Wang, H.; Ma, Y.;
Tian, H.; Yu, A.; Chang, J.; Wu, Y. Tetrahedron 2014, 70, 2669-
2673.
Table 3. Recyclability of DES solventa
Entry
Recycling
Yieldb (%)
1
2
3
4
5
1st
2nd
3rd
4th
5th
94
93
90
88
72
4. a) Badri, M.; Brunet, J. J. Tetrahedron Lett. 1992, 33, 4435-4438;
(b) Mohanazadeh, F.; Aghvami, M.; Monatsh. Chem. 2007, 138,
47-49; (c) Lourenco, N. M. T.; Afonso, C. A. M. Tetrahedron
2003, 59, 789-794.
5. (a) Lee, J. C.; Yuk, J. Y.; Cho, S. H. Synth. Commun. 1995, 25,
1367-1370; (b) Godfrey, J. D.; Mueller, R. H.; Sedergran, T. C.;
Soundararajan, N.; Colandrea, V. J. Tetrahedron Lett. 1994, 35,
6405-6408; (c) Taniguchi, H.; Nomura, E. Chem. Lett. 1988,
1773-1776; (d) Zhang, M.; Flynn, D. L.; Hanson, P. R. J. Org.
Chem. 2007, 72, 3194-3198; (e) Tanigushi, H.; Otsuji, Y.;
Nomura, E. Bull. Chem. Soc. Jpn. 1995, 68, 3563-3567; (f) Shah,
S.T. A.; Khan, K. M.; Hussain, H.; Anwar, M. U.; Fecker, M.;
Voelter, W. Tetrahedron 2005, 61, 6652-6656; (g) Shah, S. T. A.;
Khan, K. M.; Heinrich, A. M.; Choudhary, M. I.; Voelter, W.
Tetrahedron Lett. 2002, 43, 8603-8606; (h) Brown Ripin, D. H.;
Vetelino, M. Synlett. 2003, 2353-2353; (i) Kendall, J. T. J.
Labelled Compd. Radiopharm. 2000, 43, 505-514; (j) Bu, X. L.;
Jing, H. W.; Wang, L.; Chang, T.; Jin, L. L.; Liang, Y. M. J. Mol.
Catal. A: Chem. 2006, 259, 121-124; (k) Gathirwa, J. W.; Maki,
T. Tetrahedron 2012, 68, 370-375; (l) Alauddin, M. M.; Miller, J.
M.; Clark, J. H.; Can. J. Chem. 1984, 62, 263-265;
aReaction condition: Phenol (1.0 mmol), benzyl bromide (1.2 equiv), DES
(1.0 mL), base (2.0 equiv), 2 h and Temperature (80° C)
bIsolated yields
Table 4. Comparison of different methodology for
benzylation of phenols with benzyl bromide
Entry
External Solvent
Catalyst
Time(h)/
Yield
(%)
Reusa Ref.
-bility
Temp.(°C)
1
2
-
DES
2 /(80)
2 /(80)
96
Present
work
-
[bmIm]
OH
92
4b
6. Kornblum, N.; Berrigan, P. J.; Le Noble, W. J. J. Am. Chem. Soc.
1963, 85, 1141-1147.
7. Kornblum, N.; Seltzer, R.; Paul, H. J. Am. Chem. Soc.1963, 85,
1148-1154.
8. Sheldon, R. A., Green Chem. 2005, 7, 267-278.
9. (a) Romero, A.; Santos, A.; Tojo, J.; Rodriguez, A. J. Hazard.
Mater. 2008, 151, 268-273; (b) Plechkova, N. V.; Seddon, K. R.
Chem. Soc. Rev. 2008, 37, 123-150.
3
4
CS2CO3 CH3CN
5/(80)
1/(30)
92
89
5a
3b
PEG-
DCM
Water
Ammon
ium salt
10. Abbott, A.P, Davies, D. L.; Capper, G.; Rasheed, R. K.;
Tambyrajah, V.; US Patent 7,183, 433, 2007.
5
TBAB
2/(28)
97
3h
11. (a) Jhong, H. R.; Wong, D. S. H.; Wan, C. C.; Wang, Y. Y.; Wei,
T. C.; Electrochem. Commun. 2009, 11, 209-211 (b) Abbott, A.
P.; Capper, G.; McKenzie, K. J.; Ryder, K. S.; J. Electroanal.
Chem. 2007, 599, 288-294.
12. (a) Gorke, J. T.; Srienc, F.; Kazlauskas, R. J. Chem. Commun.
2008, 1235-1237; (b) Zhao, H.; Baker, G. A.; Holmes, S. Org.
Biomol. Chem. 2011, 9, 1908-19016.
13. (a) Abbott, A. P.; Bell, T. J.; Handa, S.; Stoddart, B. Green. Chem.
2005, 7, 705-707; (b) Morales, R. C.; Tambyrajah, V; Jenkins, P.
R.; Davies, D. L.; Abbott, A. P. Chem. Commun. 2004, 2, 158-
159; (c) Sonawane, Y. A.; Phadtare, S. B.; Borse, B. N.; Jagtap, A.
R.; Shankarling, G. S. Org. Lett. 2010, 12, 1456-1459; (d)
Phadtare, S. B.; Shankarling, G. S. Green Chem. 2010, 12, 458-
462.
The efficacy of the DES for benzylation of phenols with
benzyl bromide was compared with some earlier reported
catalysts as demonstrated in Table 4. Even though TBAB gives
better result at lower temperature it suffers from the drawbacks of
reusability of catalyst and solvent which is desirable from
economic and environmental point of view (Table 4, entry 5).
In conclusion, the greener protocol described in this paper
offer a new scope for benzylation of various aromatic phenols
using the deep eutectic mixture as green catalyst/solvent. The
DES was used as the catalyst and solvent there by giving good to
excellent yield of the desired product. This protocol offers
advantages with regard to high yields of products and the
greenness of procedure as no external hazardous organic solvents
and toxic catalysts was used. The DES is eco-friendly, safe,
biodegradable, non-toxic, inexpensive, easily available and
recyclable solvent. Hence this protocol offers marked
improvements in terms of simplicity, recyclability and procedure
for the preparation of benzyl phenyl ethers.
14. Patil, U. B.; Singh, A. S.; Nagarkar, J. M.; RSC Advances, 2014, 4,
1102-1106.
15. Representative reaction conditions: Phenol (0.5 mmol), benzyl
bromide (1.2 mmol) and KOH (2.0 mmol) was added to the DES
(1mL) and heated at temperature (80° C) for 2hr. After cooling to
room temperature water was added and the product was extracted
with ethyl acetate (1x 3 mL) and analyzed by GC-MS after the
addition of hexamethylbenzene as an internal standard. The
product was purified using column chromatography on silica gel
(hexane/EtOAc :: 99:1). The pure product was characterized by 1H
NMR and 13C NMR.
Acknowledgments
The author gratefully acknowledges the financial assistance
from the Green Tech. U.P.E. Government of India.