catalysts2 (Figure 1). Both continue to attract signifi-
cant attention from the research community and
show potential for industrial and scale-up applications.3
However, neither class is without their limitations, a
number of which we have observed during the course of
our own research investigations.4 For example, with cinchona-
derived bifunctional Brønsted base/H-bond donor
catalysis, although high levels of enantiocontrol can be
observed with a range of pro-nucleophiles and electro-
philes, poor reactivity can often be witnessed.1c,5 This is
particularly apparent for high pKa pro-nucleophiles where
long reaction times, high reaction temperatures, and/or
high catalyst loadings are commonly required. With APT
catalysis, higher levels of reactivity can be achieved (for
example, relatively nonacidic carbon-centered acids can be
employed in conjunction with strong external bases).
However, the levels of enantioinduction are highly depen-
dent on the exact structure of the pro-nucleophile and/or
electrophile, and small variations can result in substantial
loss of enantiofacial selectivity.2b
One design concept that could simultaneously address
these issues is to link a (variable) H-bond donor group to
an appropriate quaternary ammonium salt via a chiral
scaffold (Figure 1).6 Potentially, this would combine pro-
nucleophile activation (under strong base promotion) with
substrate control, preorganization, and activation and thus
lead to desirable levels of reactivity and stereoselectivity in a
broad range of reactions. Tactically, we envisaged that a
short and effective route to such catalysts would be to
alkylate the nucleophilic bridgehead nitrogen atom of
cinchona-derived bifunctional Brønsted base/H-bond donor
catalysts. In turn, these would be readily prepared on
scale in one step from 9-amino-9-deoxyepicinchona alka-
loids. The late stage introduction of these two key catalyst
features, namely the alkyl group of the quaternary ammo-
nium salt and the H-bond donor group, would enable
focused libraries of catalysts to be easily accessed, thus
facilitating rapid optimization in any reaction of interest.
Herein we describe the synthesis of a new family of APT
catalysts bearing ureas, amides, and sulfonamides as
H-bond donor groups, and we also present an evaluation
of their performance in the nitro-Mannich reaction of
amidosulfones.
Figure 1. Concept and design of a new family of cinchona-
derived bifunctional asymmetric phase-transfer catalysts.
by reaction of 9-amino-9-deoxyepicinchona-derived ureas,
amides, and sulfonamides with benzyl bromide, p-(trifluo-
romethyl)benzyl bromide, and (9-anthracenyl)methyl
chloride in toluene at 65 °C for 12 h (Scheme 1).
The new family of asymmetric phase-transfer catalysts
was tested in the enantioselective nitro-Mannich reaction
of in situ generated N-Boc-protected imines of aliphatic,
aromatic, and heteroaromatic aldehydes, introduced
by Herrera and Bernardi,6e and Palomo.6d This reac-
tion is known to proceed well under asymmetric phase-
transfer catalysis conditions.7 However, we believed that
A library of cinchonium/H-bond donor bifunctional
asymmetric phase-transfer catalysts 2À9was readily formed
(7) (a) Kumaraswamy, G.; Pitchaiah, A. Tetrahedron 2011, 67, 2536–
2541. (b) Bzaszczyk, R.; Gajda, A.; Zawadzki, S.; Czubacka, E.; Gajda,
T. Tetrahedron 2010, 66, 9840–9848. (c) Jiang, X.; Zhang, Y.; Wu, L.;
Zhang, G.; Liu, X.; Zhang, H.; Fu, D.; Wang, R. Adv. Synth. Catal.
(5) Oh, S. H.; Rho, H. S.; Lee, J. W.; Lee, J. E.; Youk, S. H.; Chin, J.;
Song, C. E. Angew. Chem. Int. Ed. 2008, 47, 7872–7875.
(6) For selected recent examples, see: (a) Wei, Y.; He, W.; Liu, Y.;
Liu, P.; Zhang, S. Org. Lett. 2012, 14, 704–707. (b) Fiandra, C. D.; Piras,
L.; Fini, F.; Disetti, P.; Moccia, M.; Adamo, M. F. A. Chem. Commun.
2012, 48, 3863–3865. (c) Maciver, E. E.; Knipe, P. C.; Cridland, A. P.;
Thompson, A. L.; Smith, M. D. Chem. Sci. 2012, 3, 537–540. For
representative examples, see: (d) Ohmatsu, K.; Kiyokawa, M.; Ooi, T.
J. Am. Chem. Soc. 2011, 133, 1307–1309. (e) Gomez-Bengoa, E.; Linden,
ꢀ
2009, 351, 2096–2100. (d) Palomo, C.; Oiarbide, M.; Laso, A.; Lopez, R.
J. Am. Chem. Soc. 2005, 127, 17622–17623. (e) Fini, F.; Sgarzani, V.;
Pettersen, D.; Herrera, R. P.; Bernardi, L.; Ricci, A. Angew. Chem. Int.
Ed. 2005, 44, 7975–7978.
(8) (a) Bai, S.; Liang, X.; Song, B.; Bhadury, P. S.; Hu, D.; Yang, S.
Tetrahedron: Asymmetry 2011, 22, 518–523. (b) Zhang, H.; Syed, S.;
Barbas, C. F., III. Org. Lett. 2010, 12, 708–711. (c) Verkade, J. M. M.;
van Hemert, L. J. C.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. Chem.
Soc. Rev. 2008, 37, 29–41. (d) Song, J.; Shih, H. W.; Deng, L. Org. Lett.
2007, 9, 603–606. (e) Tillman, A. L.; Ye, J.; Dixon, D. J. Chem. Commun.
2006, 1191–1193. (f) Song, J.; Deng, L. J. Am. Chem. Soc. 2006, 128,
6048–6049. (g) Bode, C. M.; Ting, A.; Schaus, S. E. Tetrahedron 2006,
62, 11499–11505. (h) Bernardi, L.; Fini, F.; Herrera, R. P.; Ricci, A.;
Sgarzani, V. Tetrahedron 2006, 62, 375–380.
ꢀ
ꢀ
A.; Lopez, R.; Mugica-Mendiola, I.; Oiarbide, M.; Palomo, C. J. Am.
ꢀ
Chem. Soc. 2008, 130, 7955–7966. (f) Berkessel, A.; Guixa, M.; Schmidt,
€
F.; Neudorfl, J. M.; Lex, J. Chem.;Eur. J. 2007, 13, 4483–4498. (g)
Sohtome, Y.; Takemura, N.; Iguchi, T.; Hashimoto, Y.; Nagasawa, K.
Synlett 2006, 144–146. (h) Ooi, T.; Ohara, D.; Fukumoto, K.; Maruoka,
K. Org. Lett. 2005, 7, 3195–3197. (i) Ooi, T.; Ohara, D.; Tamura, M.;
Maruoka, K. J. Am. Chem. Soc. 2004, 126, 6844–6845. (j) Manabe, K.
Tetrahedron 1998, 54, 14465–14476.
Org. Lett., Vol. 14, No. 10, 2012
2493