Journal of the American Chemical Society
Page 4 of 5
(11) Zhang, X.-Q.; Wang, Z.-X. Org. Biomol. Chem. 2014, 12,
1448.
(12) Moragas, T.; Gaydou, M.; Martin, R. Angew. Chem. Int. Ed.
2016, 128, 5137.
(13) For a Ni catalyzed reduction of aromatic and benzylic ammo-
nium salts, see: Yi, Y-Q-Q.; Yang, W-C.; Zhai, D-D.; Zhang, X-Y.;
Li, S-Q.; Guan, B-T. Chem. Comm. 2016, 52, 10894.
(14) (a) Maity, P.; Shacklady-McAtee, D. M.; Yap, G. P. A.; Siri-
anni, E. R.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 280. (b)
Basch, C. H.; Cobb, K. M.; Watson, M. P. Org. Lett. 2016, 18, 136.
During the preparation of this manuscript, the same group reported
the first Ni catalyzed cross-coupling of alkyl pyridinium salts: (c)
Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P. J. Am. Chem.
Soc. 2017, 139, 5313.
(15) (a) Dressaire, G.; Langlois, Y. Tetrahedron Lett. 1980, 21, 67.
(b) Hosomi, A.; Hoashi, K.; Tominaga, Y. J. Org. Chem. 1987, 52,
2947.
(16) Selected enantioselective methods to prepare secondary pro-
pargylic alcohols: (a) Matsumura, K.; Hashiguchi, S.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738. (b) Anand, N. K.;
Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687. (c) Takita, R.;
Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127,
13760. Selected enantioselective methods to prepare secondary pro-
pargylic amines: (d) Gommermann, N.; Koradin, C.; Polborn, K.;
Knochel, P. Angew. Chem. Int. Ed. 2003, 42, 5763. (e) Akullian, L.
C.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42,
4244. (f) Knöpfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.;
Carreira, E. M. Angew, Chem. Int. Ed. 2004, 43, 5971. (g) Klauber, E.
G.; De, C. K.; Shah, T. K.; Seidel, D. J. Am. Chem. Soc. 2010, 132,
13624. (h) Paioti, P. H. S.; Abboud, K. A.; Aponick, A. J. Am. Chem.
Soc. 2016, 138, 2150.
(17) For an enantioselective nickel-catalyzed Negishi coupling of
propargylic bromides to obtain similar compounds, see: Smith, S. W.;
Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645.
(18) The absolute configuration for ammonium salt (R)-1i (Scheme
2) was established by single crystal X-ray crystallography. CCDC
1546939 contains the supplementary crystallographic data for (R)-1i.
In summary, we have developed a stereospecific
1
2
3
4
5
6
7
8
method for the catalytic Kumada type coupling of sec-
ondary propargylic ammonium salts with aryl Grignard
reagents. We show for the first time that propargylic
ammonium salts are suitable partners in metal-catalyzed
reactions. Conveniently, a stable, inexpensive and com-
mercially available copper salt is used and no added
ligand is required. Surprisingly, only the α-regioisomer
is formed, which is striking for copper-catalyzed trans-
formations. Additional studies on stereospecific copper-
catalyzed coupling reactions of ammonium salts are
underway.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Experimental procedures, compound characterization data,
analytic details for all enantiomerically enriched products
and crystal structural data. This material is available free of
AUTHOR INFORMATION
Corresponding Author
Notes
No competing financial interests have been declared.
ACKNOWLEDGMENT
We thank the European Research Council (ERC-337776)
and MINECO (CTQ2016-78779-R) for financial support.
M. T. thanks MICINN for a RyC contract. V. M-H. thanks
UAM for a predoctoral fellowship. We acknowledge Dr.
Josefina Perles for X-ray structure analysis.
These
data
can
be
obtained
free
of
charge
at
(19) (a) Guisan-Ceinos, M.; Parra, A.; Martin-Heras V.; Tortosa M.
Angew. Chem. Int. Ed. 2016, 55, 6969. (b) Jarava-Barrera, C.; Parra,
A.; López, A.; Cruz-Acosta, F.; Collado-Sanz, D.; Cárdenas, D. J.;
Tortosa M. ACS Cat. 2016, 6, 442. (c) Lopez, A.; Parra, A.; Jarava-
Barrera, C.; Tortosa, M. Chem. Comm 2015, 51, 17684. (d) Parra, A.;
Amenós, L.; Guisan-Ceinos M.; López, A.; Garcia-Ruano, J. L.;
Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833. (e) Alfaro, R;
Parra, A.; Alemán, J.; Garcia-Ruano, J. L.; Tortosa, M. J. Am. Chem.
Soc. 2012, 134, 15165-15168. (f) Tortosa, M. Angew. Chem. Int. Ed.
2011, 50, 3950.
(20) Recently, Trost reported unsual SN2 stereocontrol using sec-
ondary propargylic bromides and stoichiometric diorganocuprates
generated from lithiated heterocycles and CuCN (1 equiv). However,
with arene nucleophiles they observed a 1:1 ratio of alkyne:allene
products: Trost, B. M.; Debien, L. Chem. Sci. 2016, 7, 4985.
(21) (a) Yang, M.; Yokokawa, N.; Ohmiya, H.; Sawamura, M.
Org. Lett. 2012, 14, 816. (b) Uehling, M. R.; Marionni, S. T.; Lalic,
G. Org. Lett. 2012, 14, 362.
REFERENCES
(1) (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev.
2010, 110, 624. (b) Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F.
Chem. Soc. Rev. 2011, 40, 4740. (c) Yang, L.; Huang, H. Chem. Rev.
2015, 115, 3468.
(2) (a) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610. (b) Park, Y. J.;
Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222.
(3) (a) Li, W.-N.; Wang, Z.-L. RSC Adv. 2013, 3, 25565. (b) Cor-
nella, J.; Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43, 8081.
(4) (a) Ouyang, K.; Hao, W.; Zhang, W.X.; Xi, Z. Chem. Rev.
2015, 115, 12045. (b) Wang, Q.; Su, Y.; Li, L.; Huang, H. Chem. Soc.
Rev. 2016, 45, 1257.
(5) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
(6) Nugent, T. C. Chiral Amine Synthesis; Wiley-VCH Verlag
GmbH & Co. KGaA: Weinheim, 2010.
(7) Wenkert, E.; Han, A-L.; Jenny, C. J. J. Chem. Soc., Chem.
Comm. 1988, 975.
(8) (a) Reeves, J. T.; Fandrick, D. R.; Tan, Z.; Song, J. J.; Lee, H.;
Yee, N. K.; Senanayake, C. H. Org. Lett. 2010, 12, 4388. (b) Guo,
W.-J.; Wang, Z.-X. Tetrahedron 2013, 69, 9580.
(9) Xie, L.-G.; Wang, Z.-X. Angew. Chem. Int. Ed. 2011, 50, 4901.
(10) (a) Blakey, S. B.; MacMillan, D. W. C. J. Am. Chem. Soc.
2003, 125, 6046. (b) de la Herran, G.; Csákÿ, A. G. Org. Lett. 2007,
9, 961. (c) Zhang, H.; Hagihara, S.; Itami, K. Chem. Eur. J. 2015, 21,
16796.
(22) See Supporting Information for details on the determination of
the absolute configuration of the products.
(23) The corresponding propargylic mesylate afforded 2a with
lower yield and reduced enantioselectivity. The propargylic phosphate
gave an inseparable 95:5 mixture of 2a and allene 3a. Both, mesylate
and phosphate derivatives decomposed quickly and could not be
stored. These results highlight the benefit of using an ammonium salt
as leaving group. See Supporting Information for details.
(24) 20 % of starting material along with products derived from the
addition of the Grignard reagent to the carbonyl were identified in the
1H NMR of the crude product.
(25) Westaway, K. C.; Poirier, R. A.; Can J. Chem. 1975, 53,
3216.
ACS Paragon Plus Environment