J. Cardinale et al. / Tetrahedron 68 (2012) 4112e4116
4115
4.4.1. (4-Iodophenyl)(4-methoxyphenyl)iodonium tosylate (2a). In
DCM/TFE 50:50: Beige solid (90%).
quantity of the same solvent. To this the potassium bromide solu-
tion was added and the iodonium bromide immediately started
precipitating. Due to the temperature sensitivity of iodonium
compounds, this process should be performed fast. It is advisable to
cool the mixture below 50ꢁ after addition of potassium bromide.
In DCM/TFE 97:3: White solid (68%).
4.4.2. (4-Iodophenyl)(2-thienyl)iodonium tosylate (3a). In DCM/TFE
60:40: White solid (89%).
4.7.1. Bis(4-iodophenyl)iodonium bromide (1c). White solid (75%).
Mp 195e197 ꢁC. NMR: Due to low solubility in DMSO-d6 no clear
NMR-spectrum could be recorded. HRMS (FTMSþp ESI), m/z calcd
for C12H8I3 ([MꢀBrꢀ]þ), 532.77549; found, 532.77512. HRMS
(FTMSꢀp ESI), m/z calcd for Brꢀ, 80.91629; found, 80.91675. Anal.
calcd for C12H8BrI3: C, 23.52; H, 1.32. Found: C, 24.25; H, 1.46.
4.5. Synthesis of bis(4-iodophenyl)iodonium triflate (1b)
A mixture of pI-HTIB (1.04 g, 2 mmol) and iodobenzene (0.41 g,
2 mmol) in 40 mL DCM was cooled to ꢀ78 ꢁC. Subsequently triflic
acid33 (1.76 mL, 20 mmol) was added slowly and the reaction
mixture was allowed to reach ambient temperature by stirring over
night without refreshing the cooling bath. Upon addition of the
triflic acid the reaction mixture turned to a dark blue colour (io-
dine-III intermediate), which changed to red upon completion. The
product mixture was diluted with chloroform and water and the
organic components three times extracted with chloroform. The
unified organic phase was dried over MgSO4, the solvent was
largely removed under reduced pressure and the product was
precipitated as white solid by addition of diethyl ether. This was
separated by filtration, washed with diethyl ether and dried at the
air. The material could be used for labelling reactions without fur-
ther purification. 1.12 g Beige solid, (85%). Mp 142e145 ꢁC (dec)
(Lit.:11 185e187 ꢁC). The NMR-data were consistent with the
literature.11
4.7.2. (4-Iodophenyl)(4-methoxyphenyl)iodonium bromide (2c).
White solid (82%). Mp 195e196 ꢁC 1H NMR (400 MHz, DMSO-d6)
d
: 8.06 (d, 2H, J¼8.8 Hz), 7.86 (d, 2H, J¼8.4 Hz), 7.79 (d, 2H,
J¼8.4 Hz), 6.98 (d, 2H, J¼8.8 Hz), 3.73 (s, 3H). 13C NMR (400 MHz,
DMSO-d6) d: 162.1, 140.4, 137.4, 136.7, 118.9, 117.7, 108.1, 99.8, 56.1.
HRMS (FTMSþp ESI), m/z calcd for C13H11I2Oþ ([MꢀBrꢀ]þ),
436.88938; found, 436.88894. HRMS (FTMSꢀp ESI), m/z calcd for
Brꢀ, 80.91629; found, 80.91676. Anal. calcd for C13H11BrI2O: C,
30.20; H, 2.14. Found: C, 29.46; H, 2.07.
4.7.3. (4-Iodophenyl)(2-thienyl)iodonium
bromide
(3c). White
crystals (96%). Mp 186e187 (dec) (Lit.22: 162 ꢁC). The NMR-data
were consistent with literature.22
4.6. General procedure for the anion metathesis to iodonium
triflates
Acknowledgements
The authors thank Dr. S. Willbold, Dr. D. Hofmann and J. Bach-
To a stirred solution of the iodonium tosylate in methanol (2 mL/
mmol) a solution of 2 equiv of triflic acid in DCM (5 mL/mmol) was
added. After stirring for 10 min the solution was washed with
water, dried over MgSO4 and the solvent reduced to half of its initial
volume. The product was precipitated by the addition of diethyl
ether (50 mL/mmol iodonium compound), collected by filtration,
washed with diethyl ether and dried at the air.
€
hausen, all Zentralabteilung fur Chemische Analysen, For-
€
schungszentrum Julich, for recording the spectral data.
References and notes
1. van der Puy, M. J. Fluor. Chem. 1982, 21, 385e392.
2. Coenen, H. H.; Ermert, J. Current Radiopharm. 2010, 3, 163e173.
3. Cai, L.; Lu, S.; Pike, V. W. Eur. J. Org. Chem. 2008, 2853e2873.
4. Coenen, H. H. In PET Chemistry: The Driving Force in Molecular Imaging; Schu-
biger, P. A., Lehmann, L., Friebe, M., Yang, D. J., Eds.; Springer: Berlin Heidelberg,
2007; pp 15e50.
4.6.1. (4-Iodophenyl)(4-methoxyphenyl)iodonium triflate (2b). Beige
solid (75%). Mp 240e242 ꢁC (dec). 1H NMR (400 MHz, DMSO-d6)
d:
8.12 (d, 2H, J¼8.8 Hz), 7.90 (d, 2H, J¼8.4 Hz), 7.84 (d, 2H, J¼8.4 Hz),
5. Stang, P. J. J. Org. Chem. 2003, 68, 2997e3008.
7.03 (d, 2H, J¼8.8 Hz), 3.75 (s, 3H). 13C NMR (400 MHz, DMSO-d6)
d:
6. Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523e2584.
7. Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299e5358.
8. Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123e1178.
9. Merritt, E. A.; Olofsson, B. Angew. Chem. Int. Ed. 2009, 48, 9052e9070.
10. Ermert, J.; Ludwig, T.; Gail, R.; Coenen, H. H. J. Organomet. Chem. 2007, 692,
4084e4092.
162.5, 140.7, 137.7, 136.8, 121.1 (quartet, J¼1.28 kHz), 117.9, 116.8,
105.9, 100.4, 56.1. 19F NMR (400 MHz, DMSO-d6)
d
: ꢀ77.8. HRMS
(FTMSþp ESI), m/z calcd for C13H11I2Oþ ([MꢀTfOꢀ]þ), 436.88938;
found, 436.88924. HRMS (FTMSꢀp ESI), m/z calcd for CF3O3S:
148.95257; found: 148.95250. Anal. calcd for C14H13F3I2O4S: C,
28.69; H, 1.89; S, 5.47. Found: C, 29.49; H, 1.98; S, 5.50.
€
11. Wust, F. R.; Kniess, T. J. Label. Compd. Radiopharm. 2003, 46, 699e713.
€
12. Wust, F. R.; Kniess, T. J. Label. Compd. Radiopharm. 2004, 47, 457e468.
ꢀ
13. Allain Barbier, L.; Lasne, M.-C.; Perrion-Huard, C.; Moreau, B.; Barre, L. Acta
Chemica Scandinavica 1998, 52, 480e489.
€
4.6.2. (4-Iodophenyl)(2-thienyl)iodonium triflate (3b). White solid
14. Steiniger, B.; Wust, F. R. J. Label. Compd. Radiopharm. 2006, 49, 817e827.
(69%). Mp 147e148 ꢁC (dec). 1H NMR (400 MHz, DMSO-d6)
d:
€
15. Wust, F. R.; Kniess, T. J. Label. Compd. Radiopharm. 2005, 48, 31e43.
16. Bachofner, H. E.; Beringer, F. M.; Meites, L. J. Am. Chem. Soc. 1958, 80,
4274e4278.
17. Kitamura, T.; Matsuyuki, J.; Taniguchi, H. Synthesis 1994, 147e148.
18. Wagner, A. M.; Sanford, M. S. Org. Lett. 2011, 13, 288e291.
19. Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem. 2008, 73, 4602e4607.
20. It is well known that BF4 undergoes isotopic exchange with [18F]fluoride.
Liberation of [19F]fluoride would, however, cause an isotopic dilution of [18F]
fluoride in solution. Since often less than nanomol amounts are aimed at for
‘no-carrier-added’ radiofluorination reactions, any trace amount of BF4 can
8.03e8.02 (m, 1H), 7.97e7.93 (m, 3H), 7.87e7.85 (m, 2H), 7.15e7.13
(m, 1H). 13C NMR (400 MHz, DMSO-d6)
d: 141.0, 140.7, 138.0, 139.6,
130.1, 121.1 (quartet, J¼1.28 kHz), 119.1, 101.2, 100.7. 19F NMR
(400 MHz, DMSO-d6)
d
: ꢀ77.8. HRMS (FTMSþp ESI), m/z calcd for
C10H7I2Sþ ([MꢀTfOꢀ]þ), 583.84737; found, 583.84737. HRMS
(FTMSꢀp ESI), m/z calcd for CF3O3S: 148.95257; found: 148.95254.
Anal. calcd for C11H7F3I2O3S2: C, 23.50; H, 1.26; S, 11.41. Found: C,
23.58; H, 1.23; S, 11.76.
cause
product.
a significant reduction of the molar activity of the final labelled
21. Grushin, V. V.; Demkina, I. I.; Tolstaya, T. P. J. Chem. Soc. Perkin Trans. 1992, 2,
505e515.
22. Ross, T. L.; Ermert, J.; Hocke, C.; Coenen, H. H. J. Am. Chem. Soc. 2007, 129,
8018e8025.
4.7. General procedure for the anion metathesis to iodonium
bromides
23. Zhu, M.; Jalalian, N.; Olofsson, B. Synlett 2008, 592e596.
24. Jalalian, N.; Olofsson, B. Tetrahedron 2010, 66, 5793e5800.
25. Wilgeroth, C. Chem. Ber. 1894, 27, 1790e1794.
26. Koser, G. F.; Wettach, R. H. J. Org. Chem. 1980, 45, 1542e1543.
27. Carman, C. S.; Koser, G. F. J. Org. Chem. 1983, 48, 2534e2539.
A solution containing 20% of potassium bromide in a hot
methanolewater mixture (50:50) was prepared. The appropriate
iodonium tosylate was dissolved under heating in a minimum