J. Am. Chem. Soc. 1997, 119, 719-723
719
Type I and Type II Photosensitized Oxidative Modification of
2′-Deoxyguanosine (dGuo) by Triplet-Excited Ketones
Generated Thermally from the 1,2-Dioxetane HTMD
Waldemar Adam, Chantu R. Saha-Mo1ller, and Andre´ Scho1nberger*
Contribution from the Institute of Organic Chemistry, UniVersity of Wu¨rzburg, Am Hubland,
D-97074 Wu¨rzburg, Germany
ReceiVed August 26, 1996X
Abstract: The nucleoside 2′-deoxyguanosine (dGuo) was treated with 3-(hydroxymethyl)-3,4,4-trimethyl-1,2-dioxetane
(HTMD), the latter generates efficiently triplet-excited carbonyl products on thermal decomposition in the dark.
The type I photooxidation products, 2,2-diamino-[(2-deoxy-â-D-erythro-pentofuranosyl)-4-amino]-5(2H)-oxazolone
(oxazolone) and the cyclic nucleoside 2-(S)-2,5′-anhydro-1-(2-deoxy-â-D-erythro-pentofuranosyl)-5-guanidinylidene-
2-hydroxy-4-oxoimidazolidine (oxoimidazolidine), as well as the type II photooxidation products 4-(R)*- and 4-(S)*-
4-hydroxy-8-oxo-4,8-dihydro-2′-deoxyguanosine (4-HO-8-oxodGuo) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-
oxodGuo), were quantitatively determined by appropriate selective and sensitive HPLC assays. The concentration
and time profiles revealed that about 40% of the triplet ketones derived from the thermal decomposition of HTMD
led to photooxidation of dGuo. Essentially equal amounts of type I and type II photooxidation products were found,
as could be established by comparison with predominant type I (benzophenone, riboflavin) and type II (Rose Bengal,
methylene blue) photosensitizers. The participation of singlet oxygen (type II activity) was confirmed by the substantial
D2O effect in the formation of 8-oxodGuo. The results demonstrate that dioxetanes, particularly HTMD, are efficient
photooxidants of dGuo on thermal actiVation in the dark and constitute excellent chemical tools to study
photobiological processes without the use of light, in the present case, photogenotoxicity.
Introduction
8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo)20-23 and the
2,2-diamino-[(2-deoxy-â-D-erythro-pentofuranosyl)-4-amino]-
5(2H)-oxazolone (oxazolone), which results from hydrolysis of
the corresponding imidazolone precursor,24 constitute the major
photooxidation products of DNA. While 8-oxodGuo can be
formed either directly through type I (hydrogen atom abstraction
or electron transfer)24c or indirectly through type II (singlet
oxygen, energy transfer)25,26 photooxidation processes, the
oxazolone is derived from a type I photooxidation.5,27,28
Recently, it was reported29 that oxazolone is also produced by
singlet oxygen oxidation of 8-oxodGuo, which is a primary
photooxidation product of dGuo.
Due to the importance of the oxidative degradation of nucleic
acids in mutagenesis, carcinogenesis, and aging,1-4 numerous
chemical and biological investigations have been made on this
subject in the past decade.5-7 These intensive studies have
contributed significantly in understanding the reaction mecha-
nism of nucleic acid oxidations mediated by photosensitizers,8-11
hydroxyl radicals,12,13 singlet oxygen,14,15 and other reactive
oxygen species which are involved in oxidative stress.16,17
The purine base guanine is the predominant target in the
photosensitized oxidation of DNA.18,19 The highly mutagenic
X Abstract published in AdVance ACS Abstracts, January 1, 1997.
(1) Ames, B. N.; Gold, L. S. Mutat. Res. 1990, 250, 3-16.
(2) Basaga, H. S. Biochem. Cell Biol. 1989, 68, 989-998.
(3) Ames, B. N. Free Radical Res. Commun. 1989, 7, 121-128.
(4) Sun, Y. Free Radical Biol. Med. 1989, 8, 553-599.
(5) Cadet, J. In DNA Adducts: Identification and Biological Significance;
Hemminki, K., Dipple, A., Shuker, D. E. G., Kadlubar, F. F., Segerba¨ck,
D., Bartsch, H., Eds.; IARC Publications: Lyon, France, 1994; Vol. 125,
pp 245-276.
The photosensitized oxidation of the monomeric nucleoside
2′-deoxyguanosine (dGuo) affords (Scheme 1), in addition to
8-oxodGuo and the oxazolone, the two 4R* and 4S* diastere-
omers of 4-hydroxy-8-oxo-4,8-dihydro-2′-deoxyguanosine
(18) Steenken, S. Chem. ReV. 1989, 89, 503-520.
(19) Candeias, L. P.; Steenken, S. J. Am. Chem. Soc. 1989, 111, 1094-
1099.
(6) Knorre, D. G.; Fedorova, O. S.; Frolova, E. I. Russ. Chem. ReV. 1993,
62, 65-86.
(20) Kasai, H.; Nishimura, S. In OxidatiVe Stress, Oxidants and Anti-
oxidants; Sies, H., Ed.; Academic Press: New York, 1991; pp 99-116.
(21) Ames, B. N. Science 1983, 221, 1256-1264.
(22) Floyd, R. A. Carcinogenesis 1990, 11, 1447-1450.
(23) Shibutani, S.; Takeshita, M.; Grollman, A. P. Nature 1991, 349,
431-434.
(7) Meunier, B.; Pratviel, G.; Bernadou, J. Bull. Soc. Chim. Fr. 1994,
131, 933-943.
(8) Cadet, J.; Vigny, P. In Bioorganic Photochemistry; Morrison, H.,
Ed.; John Wiley & Sons: New York, 1990; pp 1-272.
(9) Kochevar, I. E.; Dunn, D. A. In Bioorganic Photochemistry; Morrison,
H., Ed.; John Wiley & Sons: New York, 1990; pp 273-315.
(10) Epe, B. In DNA and Free Radicals; Halliwell, B., Aruoma, O. J.,
Eds.; Ellis Horwood: London, 1993; pp 41-65.
(24) (a) Cadet, J.; Berger, M.; Buchko, G. W.; Joshi, P. C.; Raoul, S.;
Ravanat, J.-L. J. Am. Chem. Soc. 1994, 116, 7403-7404. (b) Raoul, S.;
Berger, M.; Buchko, G. W.; Joshi, P. C.; Morin, B.; Cadet, J. J. Chem.
Soc., Perkin Trans. 2 1996, 371-381. (c) Kasai, H.; Yamaizumi, Z.; Berger,
M.; Cadet, J. J. Am. Chem. Soc. 1992, 114, 9692-9694.
(25) Devasagayam, T. P. A.; Steenken, S.; Obendorf, M. S. W.; Schulz,
W. A.; Sies, H. Biochemistry 1991, 25, 6283-6289.
(11) Piette, J.; Merville-Louis, M. P.; Decuyper, J. Photochem. Photobiol.
1986, 44, 793-802.
(12) von Sonntag, C. V. The Chemical Basis of Radiation Biology; Taylor
& Francis: London, 1987.
(13) Dizdaroglou, M. Free Radical Biol. Med. 1991, 10, 225-242.
(14) Piette, J. J. Photochem. Photobiol., B 1990, 4, 335-342.
(15) Epe, B. Chem. Biol. Interact. 1991, 41, 239-260.
(16) Sies, H. OxidatiVe Stress, Oxidants and Antioxidants; Academic
Press: New York, 1991.
(26) Schneider, J. E.; Price, S.; Maidt, L.; Gutteridge, J. M. C.; Floyd,
R. A. Nucleic Acids Res. 1990, 18, 631-635.
(27) Cadet, J.; Berger, M.; Decarroz, C.; Mouret, J.-F.; van Lier, J. E.;
Wagner, R. J. J. Chim. Phys. 1991, 88, 1021-1042.
(28) Ravanat, J.-L.; Berger, M.; Benard, F.; Langlois, R.; Ouellet, R.;
van Lier, J. E.; Cadet, J. Photochem. Photobiol. 1992, 55, 809-814.
(29) Raoul, S.; Cadet, J. J. Am. Chem. Soc. 1996, 118, 1892-1898.
(17) Sies, H. Angew. Chem., Int. Ed. Engl. 1986, 25, 1058-1071.
S0002-7863(96)02982-4 CCC: $14.00 © 1997 American Chemical Society