G Model
CCLET 3060 1–7
B. Palakshi Reddy et al. / Chinese Chemical Letters xxx (2014) xxx–xxx
7
[9] R.P. Thummel, The application of Friedla¨nder and Fischer methodologies to the 213
synthesis of organized polyaza cavities, Syn. Lett. (1992) 1–12.
Table 3
Comparison of the efficiency of NiO NPs for synthesis of quinoline 3a.a
214
[10] S. Glaldiali, G. Chelucci, M.S. Mudadu, M.A. Gastaut, R.P. Thummel, Friedla¨nder 215
synthesis of chiral alkyl-substituted 1,10-phenanthrolines, J. Org. Chem. 66 216
Entry
Catalyst
Time (h)
Yield (%)
(2001) 400–405.
[11] L. Strekowski, A. Czarny, The Friedla¨nder synthesis of 4-perfluoroalkylquinolines, 218
J. Fluorine Chem. 104 (2000) 281–284.
[12] G.W. Wang, C.S. Jia, Efficient solvent-free synthesis of quinolines promoted by 220
BiCl3, Lett. Org. Chem. 3 (2006) 289–291.
217
219
221
1
2
3
4
5
6
KSF clay
6
75 [12]
86 [14]
89 [15]
92 [16]
95 [17]
97
Bi(OTf)3
3.5
4
Y(OTf)3
Ag3PW12O40
NaHSO4 silicagel
NiONPs
3
3
[13] J. Wu, H.G. Xia, K. Gao, Molecular iodine: a highly efficient catalyst in the synthesis 222
of quinolines via Friedla¨nder annulation, Org. Biomol. Chem. 4 (2006) 126–129. 223
[14] J.S. Yadav, B.V.S. Reddy, V. Sunitha, K. Srinivasa Reddy, K.V.S. Ramakrishna, 224
Montmorillonite KSF-catalyzed one-pot synthesis of hexahydro-1H-pyrrolo[3,- 225
2
a
Reaction conditions: 2-aminobenzophenone (1 mmol), ethylacetoacetate
(1 mmol).
c]quinoline derivatives, Tetrahedron Lett. 45 (2004) 7947–7950.
226
[15] S.S. Palimkar, S.A. Siddiqui, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Ionic liquid- 227
promoted regiospecific Friedlander annulation: novel synthesis of quinolines and 228
fused polycyclic quinolines, J. Org. Chem. 68 (2003) 9371–9378.
229
172
4. Conclusion
[16] J.S. Yadav, B.V.S. Reddy, K. Premalatha, Bi(OTf)3-catalyzed Friedla¨nder hetero- 230
annulation: a rapid synthesis of 2,3,4-trisubstituted quinolines, Syn. Lett. (2004) 231
173
174
175
176
177
178
179
180
In summary, a new method has been developed for the
synthesis of poly-substituted quinolines under Friedla¨nder hetero-
annulation conditions using NiO NPs as a heterogeneous and
reusable catalyst. The advantages of this method are the efficiency,
generality, high yields with short reaction time, low cost, clean
product profile, simplicity, ease of preparation of the catalyst, ease
of product isolation, and compliance with the green chemistry
protocols.
963–966.
[17] S.K. De, R.A. Gibbs, A mild and efficient one-step synthesis of quinolines, Tetra- 233
hedron Lett. 46 (2005) 1647–1649.
232
234
[18] J.S. Yadav, B.V.S. Reddy, P. Sreedhar, R. Srinivasa Rao, K. Nagaiah, Silver phos- 235
photungstate: a novel and recyclable heteropoly acid for Friedla¨nder quinoline 236
synthesis, Synthesis (2004) 2381–2385.
237
[19] J.S. Yadav, P. Purushottama Rao, D. Sreenu, et al., Sulfamic acid: an efficient, cost- 238
effective and recyclable solid acid catalyst for the Friedlander quinoline synthesis, 239
Tetrahedron Lett. 46 (2005) 7249–7253.
240
[20] R. Varala, R. Enugala, S.R. Adapa, Efficient and rapid Friedlander synthesis of 241
functionalized quinolines catalyzed by neodymium(iii) nitrate hexahydrate, Syn- 242
thesis (2006) 3825–3830.
243
181
Acknowledgments
[21] S. Ghassamipour, A.R. Sardarian, Friedla¨nder synthesis of poly-substituted qui- 244
nolines in the presence of dodecylphosphonic acid (DPA) as a highly efficient, 245
recyclable and novel catalyst in aqueous media and solvent-free conditions, 246
182
183
184
185
The authors are thankful to the VIT University for providing the
generous support to carry out this work and also thankful to
the SIF-Chemistry for providing the NMR, IR facilities and powder
X-ray diffraction studies.
Tetrahedron Lett. 50 (2009) 514–519.
247
[22] B. Jiang, J. Dong, Y. Jin, X.L. Du, M. Xu, The first proline-catalyzed Friedlander 248
annulation: regioselective synthesis of 2-substituted quinoline derivatives, Eur. J. 249
Org. Chem. (2008) 2693–2696.
250
[23] B. Das, M. Krishnaiah, K. Laxminarayana, D. Nandankumar, Silica supported 251
phosphomolybdic acid: an efficient heterogeneous catalyst for Friedlander syn- 252
thesis of quinolines, Chem. Pharm. Bull. 56 (2008) 1049–1051.
[24] D. Yang, K. Jiang, J. Li, F. Xu, Synthesis and characterization of quinoline deriva- 254
tives via the Friedla¨nder reaction, Tetrahedron 63 (2007) 7654.
253
186
Appendix A. Supplementary data
255
[25] S. Sarveswari, V. Vijayakumar, An efficient microwave assisted eco-friendly 256
synthesis of 6-chloro-3-(3-arylacryl oyl)-2-methyl-4-phenylquinolines and their 257
conversion to 6-chloro-3-(1-phenyl-5-aryl-4,5-dihydro-1H-pyrazol-3-yl)-2- 258
187
188
189
Supplementary data associated with this article can be found, in
methyl-4-phenylquinolines, J. Chin. Chem. Soc. 59 (2012) 66–71.
259
[26] W.S. Loh, H.K. Fun, S.V. Sarveswari, B.P. Vijayakumar, Reddy, 1-(6-Chloro-2- 260
methyl-4-phenylquinolin-3-yl)-3-(3-methoxyphenyl)prop-2-en-1-one,
Crystallogr. E66 (2010) o91–o92.
[27] W.S. Loh, H.K. Fun, S. Sarveswari, V. Vijayakumar, B.P. Reddy, 6-Chloro-3-[5-(4- 263
Acta 261
262
190
References
fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-2-methyl-4-phenylqui-
noline, Acta Crystallogr. E66 (2010) o304.
264
265
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
[1] R.D. Larsen, E.G. Corley, A. King, et al., Practical route to a new class of LTD4
receptor antagonists, J. Org. Chem. 61 (1996) 3398–3405.
[2] Y.L. Chen, K.C. Fang, J.Y. Sheu, S.L. Hsu, C.C.J. Tzeng, Synthesis and antibacterial
evaluation of certain quinolone derivatives, Med. Chem. 44 (2001) 2374–2377.
[28] W.S. Loh, H.K. Fun, S. Sarveswari, V. Vijayakumar, B.P. Reddy, (E)-1-(6-Chloro-2- 266
methyl-4-phenyl-3-quinolyl)-3-(2-methoxyphenyl)prop-2-en-1-one, Acta Crys- 267
tallogr. E66 (2010) o353–o354.
268
[29] T. Shahani, H.K. Fun, S. Sarveswari, V. Vijayakumar, B.P. Reddy, 3-Acetyl-6-chloro- 269
2-methyl-4-phenylquinolinium perchlorate, Acta Crystallogr. E66 (2010) o1192– 270
´
[3] D. Doube, M. Blouin, C. Brideau, et al., Quinolines as potent 5-lipoxygenase
inhibitors: synthesis and biological profile of L-746,530, Bioorg. Med. Chem. Lett.
8 (1998) 1255–1260.
[4] M.P. Maguire, K.R. Sheets, K. McVety, A.P. Spada, A. Zilberstein, A new series of
PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives, J.
Med. Chem. 37 (1994) 2129–2137.
[5] S. Asghari, S. Ramezani, M. Mohseni, Synthesis and antibacterial activity of ethyl
2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-car-
boxylate, Chin. Chem. Lett. 25 (2014) 431–434.
[6] M.B. Kanani, M.P. Patel, Synthesis of N-arylquinolone derivatives bearing 2-
thiophenoxy quinolines and their antimicrobial evaluation, Chin. Chem. Lett.
[7] S.E. Denmark, S. Venkatraman, On the mechanism of the Skraup–Doebner–Von
miller quinoline synthesis, J. Org. Chem. 71 (2006) 1668–1676.
[8] E.A. Fehnel, Friedla¨nder syntheses with o-aminoaryl ketones. I. Acid-catalyzed
condensations of o-aminobenzophenone with ketones, J. Org. Chem. 31 (1966)
2899–2902.
o1193.
271
[30] S. Natarajan, P. Indumathi, B.P. Reddy, V. Vijayakumar, P.L.N. Lakshman, Ethyl 2- 272
methyl-5-oxo-4-(3,4,5-trimethoxyphenyl)-1,4,5,6,7,8-hexahydro quinoline-3- 273
carboxylate, Acta Crystallogr. E66 (2010) o2240.
274
[31] K. Rajesh, B.P. Reddy, V. Vijayakumar, Synthesis and biological evaluation of 4-(4- 275
(di-(1H-indol-3-yl)methyl)phenoxy)-2-chloroquinolines, Indian J. Heterocycl. 276
Chem. 19 (2009) 95–96.
277
[32] S. Sarveswari, V. Vijayakumar, A rapid microwave assisted synthesis of 1-(6- 278
Chloro-2-methyl-4-phenylquinolin-3-yl)-3-(aryl)prop-2-en-1-ones and its anti 279
281
[33] S. Sarveswari, V. Vijayakumar, Synthesis and characterization of new 3-(4 5- 282
dihydro-5-aryl)isoxazol-3-yl)-4-hydroxyl quinolin-2(1H)-ones and 3-(4-styryl)i- 283
soxazolo[4,5-c]quinolin-4(5H)-one derivatives, Arabian J. Chem. (2011), http:// 284
285
212
Please cite this article in press as: B. Palakshi Reddy, et al., Nickel oxide nanoparticles catalyzed synthesis of poly-substituted quinolines