Table 1 Performances of pyrene-calix[4]arenes 1 and 2 and model compound 3 in an OLED device of the structure ITO/PEDOT:PSS/Emitter/
TPBI/CsF/Al
At maximum current efficiency, Zc
At maximum luminous efficacy, Zp
b
Zca/cd AÀ1 Zext (%) Voltage/V Brightness/cd mÀ2 Zpc/lm WÀ1 Jd /mA cmÀ2 Voltage/V
Device Emitter
CIEe [x, y]
1
2
3
Pyrene-1,3-alt-calixarene (1) 10.5
2.4
6.4
1.5
8.8
11.2
1460
984
4.0
0.71
6.1
20.0
7.8
10.0
(0.15, 0.24)
(0.17, 0.23)
Pyrene-cone-calixarene (2)
Model compound (3)
No electroluminescent emission
a
b
Current efficiency. External quantum efficiency (EQE). Luminous efficacy. Current density. Commission Internationale de L’Eclairage
c
d
e
(CIE) coordinates at 9 V.
4 Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and
S. R. Forrest, Nature, 2006, 440, 908–912.
5 S. Tonzani, Nature, 2009, 459, 312–314.
6 A. R. Duggal, C. M. Heller, J. J. Shiang, J. Liu and L. N. Lewis,
J. Disp. Technol., 2007, 3, 184–192.
7 Z. Ma, S. Prashant and Z. K. Chen, Curr. Org. Chem., 2010, 14,
2034–2069.
8 J. R. Gong, L. J. Wan, S. B. Lei, C. L. Bai, X. H. Zhang and
S. T. Lee, J. Chem. Phys. B, 2005, 109, 1675–1682.
9 J. B. Birks, D. J. Dyson and I. H. Munro, Proc. R. Soc. London,
Ser. A, 1963, 275, 575–588.
10 P. Reynders, W. Kuhnle and K. A. Zachariasse, J. Am. Chem.
Soc., 1990, 112, 3929–3939.
11 K. A. Zachariasse, Trends Photochem. Photobiol., 1994, 3,
211–227.
12 K. A. Zachariasse, A. Macanita and W. Kuhnle, J. Phys. Chem. B,
1999, 103, 9356–9365.
13 J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London,
1970.
Fig. 2 The current efficiency (cd AÀ1, solid) and luminous efficacy
(lm WÀ1, dashed) of electroluminescent devices of compound 1 (red,
circle) and compound 2 (blue, cross) as a function of current density.
14 N. Karl, Synth. Met., 2003, 133–134, 649–657.
15 L. Zophel, D. Beckmann, V. Enkelmann, D. Chercka, R. Rieger
and K. Mullen, Chem. Commun., 2011, 47, 6960–6962.
16 T. M. Figueira-Duarte, P. G. Del Rosso, R. Trattnig, S. Sax,
E. J. W. List and K. Mullen, Adv. Mater., 2010, 22, 990–993.
17 F. Liu, W. Y. Lai, C. Tang, H. B. Wu, Q. Q. Chen, B. Peng,
W. Wei, W. Huang and Y. Cao, Macromol. Rapid Commun., 2008,
29, 659–664.
18 J. N. Moorthy, P. Natarajan, P. Venkatakrishnan, D. F. Huang
and T. J. Chow, Org. Lett., 2007, 9, 5215–5218.
19 P. Sonar, M. S. Soh, Y. H. Cheng, J. T. Henssler and A. Sellinger,
Org. Lett., 2010, 12, 3292–3295.
20 W. Sotoyama, H. Sato, M. Kinoshita, T. Takahashi, A. Matsuura,
J. Kodama, N. Sawatari and H. Inoue, SID Digest, 2003, 45,
1294–1295.
21 Z. Zhao, J. H. Li, X. Chen, X. Wang, P. Lu and Y. Yang, J. Org.
Chem., 2009, 74, 383–395.
22 M. Y. Lo, K. Ueno, H. Tanabe and A. Sellinger, Chem. Rec., 2006,
6, 157–168.
23 M. Y. Lo, C. Zhen, M. Lauters, G. E. Jabbour and A. Sellinger,
J. Am. Chem. Soc., 2007, 129, 5808–5809.
24 S. Sudhakar and A. Sellinger, Macromol. Rapid Commun., 2006,
27, 247–254.
25 Z. Asfari, V. Bohmer, J. Harrowfield and J. Vicens, Calixarenes
2001, Kluwer Academic Publishers, Dordrecht, the Netherlands,
2001.
quenching of excited states. In comparison, the device based
on pyrene-cone-calix[4]arene 2 was significantly less efficient;
the maximum current efficiency achieved was 2.5 cd AÀ1, that was
less than 25% the efficiency of compound 1. The clustering of all
pyrene units on one face of the cone-calix[4]arene scaffold in
compound 2 likely led to significant aggregation quenching. On
the other hand, the device with model compound 3 as the emitter
showed no electroluminescence. Varying the charge injection/
transport layers in the device and increasing bias voltage also did
not yield any emission. This clearly demonstrates the significant
role played by the calix[4]arene scaffolds in suppressing chromo-
phore aggregation.
In summary, a highly efficient solution processable blue
OLED based on pyrene-1,3-alt-calixarene 1 has been developed,
providing an excellent luminous efficiency of 10.5 cd AÀ1 and an
external quantum efficiency of 6.4% at 1460 cd mÀ2. This, to our
knowledge, represents the most efficient non-doped solution-
processable blue fluorescent OLED reported to date. This simple
strategy is synthetically straightforward to deploy, has demon-
strated its utility on traditionally poor-emitting systems such as
pyrenes, and may provide higher efficiencies for chromophore
systems that are not inherently prone to aggregation.
26 D. M. Homden and C. Redshaw, Chem. Rev., 2008, 108,
5086–5130.
27 A. Ikeda and S. Shinkai, Chem. Rev., 1997, 97, 1713–1734.
28 P. Peng, J. Zou, G. Zeng, Z. Wen and W. Zheng, Synth. Met.,
2009, 159, 1944–1949.
29 X. Q. Wei, G. Yang, J. B. Cheng, Z. Y. Lu and M. G. Xie, Opt.
Mater., 2007, 29, 936–940.
30 X. Q. Wei, G. Yang, J. B. Cheng, Z. Y. Lu and M. G. Xie, Mater.
Chem. Phys., 2007, 102, 214–218.
31 M. Conner, V. Janout and S. L. Regen, J. Org. Chem., 1992, 57,
3744–3746.
32 W. Verboom, S. Datta, Z. Asfari, S. Harkema and
D. N. Reinhoudt, J. Org. Chem., 1992, 57, 5394–5398.
33 J. R. Lackowicz, Principles of Fluorescence Spectroscopy, Kluwer
Academic/Plenum Publishers, New York, 1999.
34 J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45, 13244–13249.
Notes and references
1 A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz and
A. B. Holmes, Chem. Rev., 2009, 109, 897–1091.
2 J. W. Park, D. C. Shin and S. H. Park, Semicond. Sci. Technol.,
2011, 26, 034002.
3 S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer,
B. Lussem and K. Leo, Nature, 2009, 459, 234–239.
c
5108 Chem. Commun., 2012, 48, 5106–5108
This journal is The Royal Society of Chemistry 2012