Journal of the American Chemical Society
Communication
(13) For enantioselective Kumada reactions of α-haloketones that
proceed at −60 °C, see: Lou, S.; Fu, G. C. J. Am. Chem. Soc. 2010, 132,
1264−1266.
ACKNOWLEDGMENTS
■
Support has been provided by the National Institutes of Health
(National Institute of General Medical Sciences, grant R01−
GM62871) and the Kwanjeong Educational Foundation
(fellowship to J.C.). We thank Dr. Ashraf Wilsily for assistance
in the preparation of substrates.
(14) Under our standard conditions: on a gram-scale, the asymmetric
Negishi reaction illustrated in entry 8 of Table 2 proceeds in 90% ee
and 93% yield; if PhMgBr is employed as the nucleophile (Table 2,
entry 2), Kumada coupling occurs in 88% ee and 6% yield; there is no
erosion in the enantiomeric excess of the product during the course of
a cross-coupling; an α-chloronitrile and an α-iodonitrile cross-couple
in significantly lower ee (chloride) and/or yield (chloride and iodide);
diethylzinc and alkylzinc halides are not suitable cross-coupling
partners.
(15) Under our standard reaction conditions, essentially no cross-
coupling is observed when (o-tol)2Zn is employed as the nucleophile.
(16) The cross-coupling proceeds in high ee, but somewhat slowly, at
−78 °C.
(17) Under our standard reaction conditions, divinylzinc cross-
couples in 55% ee and 80% yield.
REFERENCES
■
(1) For leading references, see: (a) Fleming, F. F. Nat. Prod. Rep.
1999, 16, 597−606. (b) Fleming, F. F.; Yao, L.; Ravikumar, P. C.;
Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902−7917.
(2) For leading references, see: Science of Synthesis; Murahashi, S.-I.,
Ed.; Georg Thieme Verlag: Stuttgart, Germany, 2004; Vol. 19.
(3) For leading references, see: (a) Landoni, M. F.; Soraci, A. Curr.
Drug Metab. 2001, 2, 37−51. (b) Kumaresan, C. Int. J. Curr. Pharm.
Res. 2010, 2, 1−3. (c) Casalnuovo, A. L.; Rajanbabu, T. V. In Chirality
in Industry II; Collins, A. N., Sheldrake, G. N., Crosby, J., Eds.; John
Wiley & Sons: New York, 1997; Chapter 15.
(4) To the best of our knowledge, effective methods for the catalytic
enantioselective synthesis of secondary nitriles via C−H → C−Ar α-
arylations have not yet been reported.
(5) For reviews of catalytic asymmetric hydrocyanations of olefins,
see: (a) van Leeuwen, P. W. N. In Science of Synthesis, Stereoselective
Synthesis; De Vries, J. G., Molander, G. A., Evans, P. A., Eds.; Georg
Thieme Verlag: Stuttgart, Germany, 2011; Vol. 1, pp 409−475.
(b) RajanBabu, T. V.; Casalnuovo, A. L. In Comprehensive Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer:
New York, 1999; Vol. 1, pp 267−378.
(6) For examples of catalytic asymmetric conjugate additions of H−
CN to generate α-alkyl-α-arylnitriles, see: (a) α substituent = primary
alkyl group: Mita, T.; Sasaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2005, 127, 514−515. Mazet, C.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2008, 47, 1762−1765. Kurono, N.; Nu, N.; Sakaguchi, Y.; Uemura,
M.; Ohkuma, T. Angew. Chem., Int. Ed. 2011, 50, 5541−5544. (b) α
substituent = secondary alkyl group: Wang, J.; Li, W.; Liu, Y.; Chu, Y.;
Lin, L.; Liu, X.; Feng, X. Org. Lett. 2010, 12, 1280−1283.
(18) There have been a few reports of catalytic asymmetric
hydrocyanations of 1,3-dienes to generate allylic nitriles (up to 86%
ee): (a) Wilting, J.; Janssen, M.; Muller, C.; Vogt, D. J. Am. Chem. Soc.
̈
2006, 128, 11374−11375. (b) Saha, B.; RajanBabu, T. V. Org. Lett.
2006, 8, 4657−4659.
(19) (a) For early suggestions, see: Zhou, J.; Fu, G. C. J. Am. Chem.
Soc. 2004, 126, 1340−1341. Powell, D. A.; Fu, G. C. J. Am. Chem. Soc.
2004, 126, 7788−7789. (b) For a recent discussion and leading
references, see: Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2011, 133,
15362−15364. (c) For some noteworthy reports by others, see: Jones,
G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R. E.; Haley, A.
D.; Brandon, R. J.; Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic,
D. A. J. Am. Chem. Soc. 2006, 128, 13175−13183. Phapale, V. B.;
́
Bunuel, E.; García-Iglesias, M.; Cardenas, D. J. Angew. Chem., Int. Ed.
̃
2007, 46, 8790−8795. Lin, X.; Phillips, D. L. J. Org. Chem. 2008, 73,
3680−3688.
(20) For studies of (a) Hiyama reactions: Powell, D. A.; Maki, T.;
Fu, G. C. J. Am. Chem. Soc. 2005, 127, 510−511. (b) Suzuki reactions:
Gonzal
5361.
́
ez-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360−
(7) We are aware of only a few reports of cross-couplings of this type
even with achiral catalysts. (a) Negishi reactions: Frejd, T.;
Klingstedt, T. Synthesis 1987, 40−42. (b) Hiyama reactions:
Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem., Int. Ed. 2007,
46, 3556−3558. (c) Suzuki reactions: He, A.; Falck, J. R. J. Am. Chem.
Soc. 2010, 132, 2524−2525. (d) Suzuki reactions: Yang, Y.; Tang, S.;
Liu, C.; Zhang, H.; Sun, Z.; Lei, A. Org. Biomol. Chem. 2011, 9, 5343−
5345.
(21) It is possible that, in the case of certain activated electrophiles,
oxidative addition may not proceed via an initial SH2-like abstraction of
the halide by nickel to generate an alkyl radical.
(8) For a review, see: Negishi, E.-i.; Hu, Q.; Huang, Z.; Wang, G.;
Yin, N. In The Chemistry of Organozinc Compounds; Rappoport, Z.,
Marek, I., Eds.; Wiley: New York, 2006; Chapter 11.
(9) (a) Alkylations of α-haloamides: Fischer, C.; Fu, G. C. J. Am.
Chem. Soc. 2005, 127, 4594−4595. (b) Alkylations of benzylic halides:
Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482−10483. (c)
Alkylations of allylic halides: Son, S.; Fu, G. C. J. Am. Chem. Soc. 2008,
130, 2756−2757. (d) Arylations of propargylic halides and
carbonates: Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130,
12645−12647. Oelke, A. J.; Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2012,
134, 2966−2969. (e) Arylations of α-haloketones: Lundin, P. M.;
Esquivias, J.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 154−156.
(10) For a very recent application of our asymmetric allylation
method in the total synthesis of a natural product (carolacton), see:
Schmidt, T.; Kischning, A. Angew. Chem., Int. Ed. 2012, 51, 1063−
1066.
(11) Bis(oxazoline) L can be prepared in one step from commercially
available 1,1-cyclopentanedicarbonitrile and valinol.
(12) All of the diorganozinc compounds are generated from Grignard
reagents and Zn(OMe)2. For a report of the use of Zn(OMe)2 to
̂ ́
generate organozinc reagents, see: Cote, A.; Charette, A. B. J. Am.
Chem. Soc. 2008, 130, 2771−2773. When ZnX2 (X = Cl, Br, or I) is
employed instead of Zn(OMe)2, somewhat lower ee and/or yield are
observed.
9105
dx.doi.org/10.1021/ja303442q | J. Am. Chem. Soc. 2012, 134, 9102−9105