ORGANIC
LETTERS
2012
Vol. 14, No. 12
2929–2931
Intramolecular Condensation via an
o-Quinone Methide: Total Synthesis
of (()-Heliol
Jason C. Green, Eric R. Brown, and Thomas R. R. Pettus*
Department of Chemistry and Biochemistry, University of California, Santa Barbara,
California 93106, United States
Received April 24, 2012
ABSTRACT
An acid-catalyzed intramolecular [4 þ 2] cycloaddition of a non-natural bisabolene is reported. The key cyclocondensation was developed to
access cyclic sesquiterpenes from linear phenolic precursors by generating a reactive o-quinone methide intermediate to initiate a cascade
reaction. The new method was applied to the first total synthesis of (()-heliol.
Nature has produced an array of cyclic natural products
from the bisabolene skeleton manifested in curcuphenol (6)
(Scheme 1).1 The major distinction between each sesquiter-
Scheme 1. Variations of the Bisabolene Framework
pene is the resulting connectivity across the original prenyl
functionality, producing an assortment of three- to eight-
membered rings (1ꢀ5, 7ꢀ11).2 For some time, we have seen
this array as a remarkable opportunity for chemical study in
the hopes of developing new dearomatization methods that
might access members of these structurally related natural
products from a common linear phenolic system in a
selective fashion.
One of our first studies delved into the biosynthesis of
helianane, the putative des-hydroxy des-phenoxy
(1) (a) Bohlmann, F.; Lonitz, M. Chem. Ber. 1978, 111, 843–952. (b)
Wright, A. E.; Pomponi, S. A.; McConnell, O. J.; Kohmoto, S.;
McCarthy, P. J. J. Nat. Prod. 1987, 50, 976–978. (c) Fusetani, N.;
Sugano, M.; Matsunaga, S.; Hashimoto, K. Experientia 1987, 43,
1234–1235. (d) Butler, M. S.; Capon, R. J.; Nadeson, R.; Beveridge,
A. A. J. Nat. Prod. 1991, 54, 619–623.
(2) (a) Irie, T.; Suzuki, M.; Hayakawa, Y. Bull. Chem. Soc. Jpn. 1969,
42, 843–844. (b) Ishikawa, N. K.; Yamaji, K.; Tahara, S.; Fukushi, Y.;
Takahashi, K. Phytochemistry 2000, 54, 77–782. (c) Ishikawa, N. K.;
Fukishi, Y.; Yamaji, K.; Tahara, S.; Takakashi, K. J. Nat. Prod. 2001,
64, 932–934. (d) Suzuki, M.; Kurosawa, E. Tetrahedron Lett. 1978, 28,
2503–2506. (e) Macias, F. A.; Varela, R. M.; Torres, A.; Molinillo,
J. M. G.; Fronzek, F. R. Tetrahedron Lett. 1993, 34, 1999–2002. (f) We
assigned the name “heliol” to a natural product reported in: de Nys,
R.; Coll, J. C.; Bowden, B. F. Aust. J. Chem. 1992, 45, 1611–1623.
(g) Harrison, B.; Crews, P. J. Org. Chem. 1997, 62, 2646–2648.
(h) Jakupovic, J.; Warning, U.; Bohlmann, F.; King, R. M. Rev. Latinoam.
enantiomeric antipode of heliannuol A (7).3 Our attempts
ultimately led to the repudiation of the entire helianane
familyand a new putative biosynthesisfor heliannuol D (4)
and A (7). The efforts also provided syntheses of the
(3) Green, J. C.; Jiminez-Alonso, S.; Brown, E. R.; Pettus, T. R. R.
Org. Lett. 2011, 13, 5500–5503.
Quim. 1987, 18, 75–76. (i) Walter, P. Annalen 1841, 39, 246.
r
10.1021/ol301092w
2012 American Chemical Society
Published on Web 05/31/2012