3164
H. Yanai et al. / Tetrahedron Letters 53 (2012) 3161–3164
2. (a) Passerini, M. Gazz. Chim. Ital. 1921, 51, 181–189; (b) Ugi, I.; Lohberger, S.;
Karl, R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 2, p 1083; (c) Banfi, L.; Riva, R. Org. React. 2005,
65, 1–140.
3. Recent examples of isocyanide based chemistry, see: (a) Tobisu, M.; Chatani, N.
Chem. Lett. 2011, 40, 330–340; (b) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu,
J. Angew. Chem., Int. Ed. 2008, 47, 388–391; (c) Denmark, S. E.; Fan, Y. J. Am.
Chem. Soc. 2003, 125, 7825–7827; (d) Andreana, P. R.; Liu, C. C.; Schreiber, S. L.
Org. Lett. 2004, 6, 4231–4233; (e) Li, X.; Yuan, Y.; Berkowitz, W. F.; Todaro, L. J.;
Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 13222–13224; (f) Tobisu, M.;
Yamaguchi, S.; Chatani, N. Org. Lett. 2007, 9, 3351–3353; (g) Brioche, J.; Masson,
G.; Zhu, J. Org. Lett. 2010, 12, 1432–1435.
Kalinski, C.; Ross, G.; Kolb, J.; Burdack, C.; Hiller, W. Tetrahedron Lett. 2005, 46,
7393–7396; (c) Nixey, T. Hulme. C Tetrahedron Lett. 2002, 43, 6833–6835.
14. Cu-catalyzed (3+2) cycloaddition of nitriles and trimethylsilyl azide has been
reported. See: Jin, T.; Kitahara, F.; Kamijo, S.; Yamamoto, Y. Chem. Asian J. 2008,
3, 1575–1580.
15. (a) Yanai, H.; Taguchi, T. Tetrahedron Lett. 2005, 46, 8639–8643; (b) Yanai, H.;
Obara, S.; Taguchi, T. Org. Biomol. Chem. 2008, 6, 2679–2685.
16. To a solution of cinnamaldehyde 1a (198 mg, 1.50 mmol), HC(OMe)3 (237
1.50 mmol), and In(OTf)3 (17.0 mg, 0.03 mmol, 2 mol%) in propan-1-ol (6.0 mL),
t-BuNC (165 L, 1.50 mmol) and Me3SiN3 (796 L, 6.00 mmol) were added at
room temperature. After being stirred at 80 °C for 1 h, additional isocyanide
(165 L, 1.50 mmol) was reacted for 1 h at the same temperature. The reaction
lL,
l
l
l
4. For example, see: (a) Ugi, I.; Rosendahl, F. K. Chem. Ber. 1961, 94, 2233–2238;
(b) Neidlein, R. Naturforsch 1964, 19b, 1159–1160; (c) Kern, O. T.; Motherwell,
W. B. Chem. Commun. 2003, 2988–2989; (d) Oaksmith, J. M.; Peters, U.; Ganem,
B. J. Am. Chem. Soc. 2004, 126, 13606–13607; (e) Pirali, T.; Mossetti, R.; Galli, S.;
Tron, G. C. Org. Lett. 2011, 13, 3734–3737.
mixture was directly evaporated and the resulting residue was purified by flash
column chromatography on neutral silica gel (hexane/EtOAc = 10:1) to give (E)-
1-tert-butyl-5-(1-isopropoxy-3-phenylallyl)-1H-tetrazole 3a in 78% yield
(350.8 mg, 1.17 mmol). Colorless crystals (EtOAc); Mp. 40.0–41.0 °C; IR (KBr)
m
3083, 3028, 2976, 1599, 1496, 1093 cmꢀ1 1H NMR (400 MHz, CDCl3) d 1.22
;
5. (a) El Kaim, L.; Gizolme, M.; Grimaud, L. Org. Lett. 2006, 8, 5021–5023; (b) El
Kaim, L.; Gizolme, M.; Grimaud, L.; Oble, J. J. Org. Chem. 2007, 72, 4169–4180;
(c) Dai, W.-M.; Li, H. Tetrahedron 2007, 63, 12866–12876.
6. (a) Tobisu, M.; Kitajima, A.; Yoshioka, S.; Hyodo, I.; Oshita, M.; Chatani, N. J. Am.
Chem. Soc. 2007, 129, 11431–11437; (b) Yoshioka, S.; Oshita, M.; Tobisu, M.;
Chatani, N. Org. Lett. 2005, 7, 3697–3699.
(3H, d, J = 6.0 Hz) and 1.23 (3H, d, J = 6.0 Hz), 1.79 (9H, s), 3.91 (1H, septet,
J = 6.0 Hz), 5.68 (1H, d, J = 6.7 Hz), 6.57 (1H, dd, J = 16.1, 6.7 Hz), 6.65 (1H, d,
J = 16.1 Hz), 7.25–7.29 (1H, m), 7.30–7.37 (2H, m), 7.43 (2H, d, J = 8.6 Hz); 13C
NMR (100 MHz, CDCl3) d 21.6 and 23.0, 30.1, 62.1, 69.9, 71.5, 126.3, 126.9, 128.5,
128.7, 134.3, 135.6, 154.2; MS (ESI-TOF) m/z 301 [M+H]+; HRMS calcd for
C
17H25N4O [M+H]+, 301.2028; found, 301.2052. Anal. Calcd for C17H24N4O: C,
7. Soeta, T.; Kojima, Y.; Ukaji, Y.; Inomata, K. Org. Lett. 2010, 12, 4341–4343.
8. Yanai, H.; Oguchi, T.; Taguchi, T. J. Org. Chem. 2009, 74, 3927–3929.
9. It is known that reaction of acetals and isocyanides in the presence of acid
67.97; H, 8.05; N, 18.65. Found: C, 67.82; H, 8.00; N, 18.50.
17. The use of sodium azide instead of trimethylsilyl azide resulted in the selective
formation of amide 2a. When 2 equiv of trimethylsilyl azide was used,
tetrazole 3a was also obtained in only 52% yield along with the formation of
amide 2a in 21% yield.
18. Metal triflate-catalyzed Passerini type reactions, see: (a) Xia, Q.; Ganem, B. Org.
Lett. 2002, 4, 1631–1634; (b) Wang, S.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Eur. J.
Org. Chem. 2007, 4076–4080.
catalysts gives a-alkoxyamides. See: (a) Mukaiyama, T.; Watanabe, K.; Shiono,
M. Chem. Lett. 1974, 1457–1458; (b) Barrett, A. G. M.; Barton, D. H. R.; Falck, J.
R.; Papaioannou, D.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 1979, 652–
661.
10. Chua, G.-L.; Loh, T.-P. In(III) Lewis Acids In Acid Catalysis in Modern Organic
Synthesis; Yamamoto, H., Ishihara, K., Eds.; Wiley-VCH: Weinheim, 2008; Vol.
1, pp 377–467.
19. Bertani, R.; Crociani, L.; D’Arcangelo, G.; Rossetto, G.; Traldi, P.; Zanella, P. J.
Organomet. Chem. 2001, 626, 11–15.
11. (a) Pellissier, H.; Meou, A.; Gil, G. Tetrahedron Lett. 1986, 27, 2979–2980; (b)
Pellissier, H.; Meou, A.; Gil, G. Tetrahedron Lett. 1986, 27, 3505–3506.
12. Ugi, I.; Meyr, R. Chem. Ber. 1961, 94, 2229–2233.
13. Recent examples of this reaction, see: (a) Yue, T.; Wang, M.-X.; Wang, D.-X.;
Zhu, J. Angew. Chem., Int. Ed. 2008, 47, 9454–9457; (b) Mayer, J.; Umkehrer, M.;
20. Since the reaction of 3-phenylpropanal as an aliphatic aldehyde substrate gave
a complex mixture, we could not isolate the desired tetrazole.
21. The addition of trimethyl orthoformate possibly accelerates the formation of
carboxonium ion A, and at the same time, it inhibits the hydrolysis of nitrilium
ion B.