ACS Medicinal Chemistry Letters
Letter
(8) Porter, E. A.; Weisblum, B.; Gellman, S. H. Mimicry of host-
defense peptides by unnatural oligomers: Antimicrobial β-peptides. J.
Am. Chem. Soc. 2002, 124, 7324−7330.
(9) Andreu, D.; Ubach, J.; Boman, A.; Wahlin, B.; Wade, D.;
Merrifield, R. B.; Boman, H. G. Shortened cecropin A-melittin hybrids.
Significant size reduction retains potent antibiotic activity. FEBS Lett.
1992, 296, 190−194.
(10) Wieprecht, T.; Dathe, M.; Krause, E.; Beyermann, M.; Maloy,
W. L.; MacDonald, D. L.; Bienert, M. Modulation of membrane
activity of amphipathic, antibacterial peptides by slight modifications of
the hydrophobic moment. FEBS Lett. 1997, 417, 135−140.
(11) Chen, Y.; Mant, C. T.; Farmer, S. W.; Hancock, R. E.; Vasil, M.
L.; Hodges, R. S. Rational design of alpha-helical antimicrobial
peptides with enhanced activities and specificity/therapeutic index. J.
Biol. Chem. 2005, 280, 12316−12329.
(12) Fernandez-Vidal, M.; Jayasinghe, S.; Ladokhin, A. S.; White, S.
H. Folding amphipathic helices into membranes: amphiphilicity
trumps hydrophobicity. J. Mol. Biol. 2007, 370, 459−470.
(13) Wimley, W. C. Describing the mechanism of antimicrobial
peptide action with the interfacial activity model. ACS Chem. Biol.
2010, 5, 905−917.
(14) Yang, L.; Gordon, V. D.; Mishra, A.; Som, A.; Purdy, K. R.;
Davis, M. A.; Tew, G. N.; Wong, G. C. Synthetic antimicrobial
oligomers induce a composition-dependent topological transition in
membranes. J. Am. Chem. Soc. 2007, 129, 12141−12147.
(15) Mihajlovic, M.; Lazaridis, T. Charge distribution and imperfect
amphipathicity affect pore formation by antimicrobial peptides.
Biochim. Biophys. Acta 2012, 1818, 1274−1283.
(16) Jiang, Z.; Vasil, A. I.; Gera, L.; Vasil, M. L.; Hodges, R. S.
Rational design of alpha-helical antimicrobial peptides to target Gram-
negative pathogens, Acinetobacter baumannii and Pseudomonas
aeruginosa: Utilization of charge, “specificity determinants,” total
hydrophobicity, hydrophobe type and location as design parameters to
improve the therapeutic ratio. Chem. Biol. Drug Des. 2011, 77, 225−
240.
(17) Tang, H.; Doerksen, R.; Jones, T.; Klein, M.; Tew, G.
Biomimetic Facially Amphiphilic Antibacterial Oligomers with
Conformationally Stiff Backbones. Chem. Biol. 2006, 13, 427−435.
(18) Tew, G. N.; Liu, D.; Chen, B.; Doerksen, R. J.; Kaplan, J.;
Carroll, P. J.; Klein, M. L.; DeGrado, W. F. De novo design of
biomimetic antimicrobial polymers. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 5110−5114.
(19) Tang, H.; Doerksen, R. J.; Tew, G. N. Synthesis of urea
oligomers and their antibacterial activity. Chem. Commun. 2005, 1537.
(20) Arnt, L.; Rennie, J. R.; Linser, S.; Willumeit, R.; Tew, G. N.
Membrane activity of biomimetic facially amphiphilic antibiotics. J.
Phys. Chem. B 2006, 110, 3527−3532.
2 kcal/mol required for the insertion of a polar amide moiety
into the hydrophobic core limits the penetration ability of the
DA SMAMPs.28 This reduces the volume of the hydrophobic
groups that is inserted into the membrane resulting in less
positive curvature generation, which is needed for pore
formation and a broad range of barrier disruption events.
This is reflected in the difference in activities of the DA and FA
SMAMPs 8 and 2 against E. coli (MIC > 50 vs 3.13 μg/mL,
respectively).
In summary, the SAR studies of the FA and DA SMAMPs
described here reveal the significance of topologically
homogeneous amphiphilicity for attaining antimicrobial activity,
especially against Gram-negative E. coli. The FA SMAMPs had
broad spectrum activity against both S. aureus and E. coli,
whereas the insertion of a disruptive amide linker in the DA
SMAMPs led to a complete loss of activity against E. coli. The
IW values of the SMAMPs provided an efficient approach to
quantify the amphiphilicity of these small molecules, and this
method can aid in the design of potent and selective SMAMPs
with broad spectrum activity that are potentially useful for
therapeutic applications.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details, HPLC purity data, broad spectrum
antimicrobial activity, and additional figures. This material is
AUTHOR INFORMATION
■
Corresponding Author
Funding
This work has been supported by the NIH (AI-074866 and
U01 AI-082192). Mass spectral data were obtained at the
University of Massachusetts Mass Spectrometry Facility, which
is supported, in part, by the National Science Foundation. This
work also used shared facilities supported from the MRSEC on
Polymers at UMass (DMR-0820506).
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(21) Arnt, L.; Tew, G. N. Cationic facially amphiphilic poly-
(phenylene ethynylene)s studied at the air-water interface. Langmuir
2003, 19, 2404−2408.
We acknowledge Melissa Lackey and Michael Lis for their
invaluable comments on the early drafts.
(22) Thaker, H. D.; Som, A.; Ayaz, F.; Lui, D.; Pan, W.; Scott, R. W.;
Anguita, J.; Tew, G. N. Synthetic mimics of antimicrobial peptides with
immunomodulatory responses. J. Am. Chem. Soc. 2012, 134, 11088−
11091.
(23) Fjell, C. D.; Hiss, J. A.; Hancock, R. E. W.; Schneider, G.
Designing antimicrobial peptides: form follows function. Nat. Rev.
Drug Discovery 2012, 11, 37−51.
(24) Chan, D. I.; Prenner, E. J.; Vogel, H. J. Tryptophan- and
arginine-rich antimicrobial peptides: structures and mechanisms of
action. Biochim. Biophys. Acta 2006, 1758, 1184−1202.
(25) Cruciani, G.; Crivori, P.; Carrupt, P. A.; Testa, B. Molecular
fields in quantitative structure−permeation relationships: The VolSurf
approach. J. Mol. Struct.: THEOCHEM 2000, 503, 17−30.
(26) Zimmerberg, J.; Kozlov, M. M. How proteins produce cellular
membrane curvature. Nat. Rev. Mol. Cell Biol. 2006, 7, 9−19.
(27) Schmidt, N. W.; Mishra, A.; Lai, G. H.; Davis, M.; Sanders, L.
K.; Tran, D.; Garcia, A.; Tai, K. P.; McCray, P. B.; Ouellette, A. J.;
Selsted, M. E.; Wong, G. C. Criterion for amino acid composition of
REFERENCES
■
(1) Taubes, G. The bacteria fight back. Science 2008, 321, 356−361.
(2) Zasloff, M. Antimicrobial peptides of multicellular organisms.
Nature 2002, 415, 389−395.
(3) Hancock, R. E. W.; Sahl, H.-G. Antimicrobial and host-defense
peptides as new anti-infective therapeutic strategies. Nat. Biotechnol.
2006, 24, 1551−1557.
(4) Jenssen, H.; Hamill, P.; Hancock, R. E. Peptide antimicrobial
agents. Clin. Microbiol. Rev. 2006, 19, 491−511.
(5) Marr, A.; Gooderham, W.; Hancock, R. Antibacterial peptides for
therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol.
2006, 6, 468−472.
(6) Rotem, S.; Mor, A. Antimicrobial peptide mimics for improved
therapeutic properties. Biochim. Biophys. Acta, Biomembr. 2009, 1788,
1582−1592.
(7) Som, A.; Vemparala, S.; Ivanov, I.; Tew, G. N. Synthetic mimics
of antimicrobial peptides. Biopolymers 2008, 90, 83−93.
484
dx.doi.org/10.1021/ml300307b | ACS Med. Chem. Lett. 2013, 4, 481−485