4
J. Park et al. / Bioorg. Med. Chem. Lett. xxx (2013) xxx–xxx
Pharmacol. 1991, 18, S1; (c) Triggle, D. J. Biochem. Pharmacol. 2007, 74, 1; (d)
Table 3
McGivern, L. G. CNS Neurol. Disord. Drug Targets 2006, 5, 587; (e) Reger, T. S.;
Yang, Z.-Q.; Schlegel, K.-A. S.; Shu, Y.; Mattern, C.; Cube, R.; Rittle, K. E.;
McGaughey, G. B.; Hartman, G. D.; Tang, C.; Ballard, J.; Kuo, Y.; Prueksaritanont,
T.; Nuss, C. E.; Doran, S. M.; Fox, S. V.; Garson, S. L.; Li, Y.; Kraus, R. L.; Uebele, V.
N.; Renger, J. J.; Barrow, J. C. Bioorg. Med. Chem. Lett. 2011, 1692.
4. Crunelli, V.; Cope, D. W.; Hughes, S. W. Cell Calcium 2006, 40, 175.
5. (a) McDonough, S. I.; Bean, B. P. Mol. Pharmacol. 1998, 54, 1080; (b) Mishra, S.
K.; Hermsmeyer, K. Circ. Res. 1994, 75, 144; (c) Med. Lett. 1997, 39, 103.
6. (a) Doddareaddy, M. R.; Choo, H.; Cho, Y. S.; Rhim, H.; Koh, H. Y.; Lee, J.-H.;
Jeong, S.-W.; Pae, A. N. Bioorg. Med. Chem. 2007, 15, 1091; (b) Doddareaddy, M.
R.; Jung, H. K.; Lee, J. Y.; Lee, Y. S.; Cho, Y. S.; Koh, H. Y.; Pae, A. N. Bioorg. Med.
Chem. 2004, 12, 1605.
7. (a) Klunder, J. M.; Onami, T.; Sharpless, K. B. J. Org. Chem. 1989, 54, 1295; (b)
Sun, D.; Scherman, M. S.; Jones, V.; Hurdle, J. G.; Woolhiser, L. K.; Knudson, S. E.;
Lenaerts, A. J.; Slayden, R. A.; McNeil, M. R.; Lee, R. E. Bioorg. Med. Chem. 2009,
17, 3588; (c) Yang, W.; Wang, Y.; Roberge, J. Y.; Ma, Z.; Liu, Y.; Lawrence, R. W.;
Rotella, D. P.; Seethala, R.; Feyen, J. H. M.; Dickson, J. K. Bioorg. Med. Chem. Lett.
2005, 15, 1225.
Brain pharmacokinetic parameters after oral administration of 6m (10 mg/kg) and 6q
(10 mg/kg) to ICR mice (n = 3 per time point)
6m
Plasma
6q
Brain
Plasma
Brain
AUC0–1
AUClast
Terminal half-life (min)
Cmax g/mL)
(
l
g min/ml or
l
g min/g)
198.1
188.5
102.4
1.566
15
686.6
497.4
474.3
4.662
15
16.55
15.61
56.54
0.1974
15
—
(l
g min/ml or
l
g min/g)
119.1
185.9
0.8702
30
(
l
Tmax (min)
AUCbrain/AUCplasma (%)
F (%)
346.5
67.25
763.0
9.935
Values are presented as mean. Cmax, peak plasma and brain concentration; Tmax
,
time to reach Cmax; AUC (area under the plasma concentration versus time cur-
ve) = dose/clearance; F, bioavailability; AUCbrain/AUCplasma, equal to B/P ratio.
8. All data of compounds such as experimental procedure, and spectroscopy data
are mentioned on Supplementary data.
9. Experimental procedure for the FDSS6000 assay: HEK 293cells which express
both stable
medium supplemented with 10% (v/v) fetal bovine serum, penicillin (100 U/
mL), streptomycin (100 g/mL), geneticin (500 g/mL), and puromycin (1 g/
mL) at 37 °C in a humid atmosphere of 5% CO2 and 95% air. Cells were seeded
into 96-well black wall clear bottom plates at a density of 40,000 cells/well and
were used on the next day for high-throughput screening (HTS) FDSS 6000
assay. For FDSS6000 assay, cells were incubated for 60 min at room
a1G and Kir2.1 subunits were grown in Dulbecco’s modified Eagle’s
ing high potency. Especially compound 6m and 6q showed high
selectivity over hERG channel and against T-type calcium channel
(IC50 ratio of hERG/a1G 6m = 8.5, 6f = 18.38). Compound 6m
showed excellent pharmacokinetic profile in rats. Our results show
promise because we gained proof of concept using a ligand-based
drug design with a new target. Further assays with neuropathic
pain models and structural optimization will be followed with this
scaffold.
l
l
l
temperature with 5 lM fluo3/AM and 0.001% Pluronic F-127 in a HEPES-
buffered solution composed of (in mM): 115 NaCl, 5.4 KCl, 0.8 MgCl2, 1.8 CaCl2,
20 HEPES, 13.8 glucose (pH 7.4). During fluorescence-based FDSS6000 assay,
a1G T-type Ca2+ channels were activated using a high concentration of KCl
(70 mM) in 10 mM CaCl2 contained a HEPES-buffered solution, and the increase
in [Ca2+]i by KCl-induced depolarization was detected. Throughout the entire
procedure, cells were washed in a BIO-TEK 96-well washer. All data were
collected and analyzed using FDSS6000 and related software (Hamamatsu,
Japan).
Acknowledgment
We thank Medifron DBT for pain animal test. This work was
supported by the research fund of Korea Institute of Science and
Technology (2E 22760).
10. Experimental procedure for the patch-clamp test (electro-physiological
recording): For the recording of a1G T-type Ca2+ currents, the standard
whole-cell patch-clamp method was utilized. Briefly, borosilicate glass
electrodes with
a resistance of 3–4 MX were pulled and filled with the
internal solution containing (in mM): 130 KCl, 11 EGTA, 5 Mg-ATP, and 10
HEPES (pH 7.4). The external solution contained (in mM): 140 NaCl, 2 CaCl2, 10
HEPES, and 10 glucose (pH 7.4). a1G T-type Ca2+ currents were evoked every
15 s by a 50 ms depolarizing voltage step from ꢁ100 to ꢁ30 mV. The molar
concentration of test compounds required to produce 50% inhibition of peak
currents (IC50) were determined from fitting raw data into dose–response
curves. The current recordings were obtained using an EPC-9 amplifier and
Pulse/Pulsefit software program (HEKA, Germany). For more details, see: (a)
Rhim, H.; Lee, Y. S.; Park, S. J.; Chung, B. Y.; Lee, J. Y. Bioorg. Med. Chem. Lett.
2005, 15, 283; (b) Choi, K. H.; Song, C.; Shin, D.; Park, S. Biochim. Biophys. Acta,
Biomembr. 2011, 1808, 1560.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Clapham, D. E. Cell 2007, 131, 1047; (b) Perez-Rey, E. Physiol. Rev. 2003, 83,
117.
2. Ono, K.; Iijima, T. J. Pharmacol. Sci. 2005, 99, 197.
3. (a) Shin, H.-S.; Cheong, E.-J.; Choi, S.; Lee, J.; Na, H. S. Curr. Opin. Pharmacol.
2008, 8, 33; (b) Peters, T.; Vanhoutte, P. M.; Zwieten, P. A. J. Cardiovasc.
11. (a) De Bruin, M. L.; Pettersson, M.; Meyboom, R. H. B.; Hoes, A. W.; Leufkens, H.
G. M. Eur. Heart J. 2005, 26, 590; (b) Woo, H. M.; Lee, Y. S.; Roh, E. J.; Seo, S. H.;
Song, C. M.; Chung, H. J.; Pae, A. N.; Shin, K. J. Bioorg. Med. Chem. Lett. 2011, 21,
5910.