Scheme 2. Synthesis of the C1ꢀC9 Fragment of Peloruside A (5)
by taking advantage of reactivity differences of the borane
moieties and by limiting the amount of the first aldehyde.4
Interestingly, Soderquist et al. prepared borabicyclo-
[3.3.2]decane-derived 1,3-diborylpropenes which undergo
1,3-borotropic shifts to react as 1,1-bimetallic allylation
species. Sequential reactions occur first with ketones, and
subsequent additions to aldehydes produce 2-vinyl-1,3-diols
of high enantiomeric purity.5
Our previous studies have utilized the mild and quanti-
tative replacement of allylic stannanes with chiral, non-
racemic boranes as an effective strategy for asymmetric
allylation.9 This technique tolerates a wide range of func-
tionality and has proven to be extremely useful in the
synthesis of complex natural products.10 While the trans-
metalation of the stannane is highly favored, allylic tri-
methylsilanes were found to be inert. This observation
established a basis for our studies of sequential allylation
processes utilizing aninitial reagent-controlled asymmetric
reaction. These efforts have been applied for a stereocon-
trolled synthesis of the C(1)ꢀC(9) fragment of peloruside
A (5) as shown in Scheme 2. Thus, facile transmetalation of
allylic stannane 611 using the bromoborane 712 provided
in situ generation of nonracemic 1,3,2-diazaborolidine 8
upon stirring at 22 °C for 16 h. The (R,R)-1,2-diamino-
1,2-diphenylethylene N,N-sulfonamide was incorporated
as an effective chiral controller.13 A rapid SE0 reaction was
observed upon cooling to ꢀ78 °C with the addition of
0
Properties of reactivity and selectivity of SE reactions
using silyl-substituted allylmetal reagents have primarily
been investigated for examples leading to 1,2-anti-β-hydroxy
allylsilanes.6 Peng and Hall described a variation of this
theme in which enantiocontrolled allylation results in
the participation of an allylic silane in an intramolecular
Prins reaction affording nonracemic 1,2,4-trisubstituted
tetrahydrofurans.7 A significant precedent was estab-
lished by Keck et al. using 2-(trimethylsilylmethyl)-
allyltri-n-butylstannane for the convergent union of
two aldehydes in an asymmetric allylation-Prins se-
quence to yield 2,6-cis-disubstituted-4-methylenetetra-
hydropyrans.8
(9) (a) Williams, D. R.; Meyer, K. G.; Shamim, K.; Patnaik, S. Can.
J. Chem. 2004, 82, 120–130. (b) Williams, D. R.; Kiryanov, A. A.; Emde,
U.; Clark, M. P.; Berliner, M. A.; Reeves, J. T. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 12058–12063.
(3) Barrett, A. G. M.; Braddock, D. C.; de Koning, P. D.; White,
A. J. P.; Williams, D. J. J. Org. Chem. 2000, 65, 375–380.
(4) (a) Kister, J.; Nuhant, P.; Lira, R.; Sorg., A.; Roush, W. R. Org.
Lett. 2011, 13, 1868–1871. (b) Flamme, E. M.; Roush, W. R. J. Am.
Chem. Soc. 2002, 124, 13644–13645.
(10) (a) Hennoxazole, A; Williams, D. R.; Brooks, D. A.; aBerliner,
M. A. J. Am. Chem. Soc. 1999, 121, 4924–4925. (b) Amphidinolide, K;
Williams, D. R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765–767. (c)
Leucascandrolide, A; Williams, D. R.; Plummer, S. V.; Patnaik, S.
Tetrahedron 2011, 67, 4949–4953. See also: Williams, D. R.; Patnaik,
S.; Plummer, S. V. Org. Lett. 2003, 5, 5035–5038. (d) Phorboxazole, A;
Williams, D. R.; Kiryanov, A. A.; Emde, U.; Clark, M. P.; aBerliner,
M. A. Angew. Chem., Int. Ed. 2003, 42, 1258–1262.
(11) For a preparation of stannane 6: Clive, D. L. J.; Paul, C. C.;
Wang, Z. J. Org. Chem. 1997, 62, 7028–7032.
(12) For information regarding the preparation of 7: (4R,5R)-
2-Bromo-1,3-bis[(4-methylphenyl)sulfonyl]-4,5-diphenyl-1,3,2-diazabor-
olidine. e-EROS Encyclopedia of Reagents for Organic Synthesis
[Online]; John Wiley & Sons, Ltd.: Posted October 15, 2002; DOI:
10.1002/047084289X.rn00115.
ꢀ
ꢀ
(5) Gonzalez, A. Z.; Roman, J. G.; Alicea, E.; Canales, E.; Soderquist,
J. A. J. Am. Chem. Soc. 2009, 131, 1269–1273.
(6) For a leading reference: Chen, M.; Roush, W. R. Org. Lett. 2011,
13, 1992–1995.
(7) (a) Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007, 129, 3070–3071.
(b) Sivasubramaniam, U.; Hall, D. G. Heterocycles 2010, 80, 1449–1456.
(c) See also: Sarkar, T. K.; Haque, S. A.; Basak, A. Angew. Chem., Int.
Ed. 2004, 43, 1417–1419.
(8) Keck, G. E.; Covel, J. A.; Schiff, T.; Yu, T. Org. Lett. 2002, 4,
1189–1192.
Org. Lett., Vol. 14, No. 15, 2012
3867