10.1002/anie.201806059
Angewandte Chemie International Edition
COMMUNICATION
(No. 2013CB834802) and the Basic Research Program of Shenzhen
(No. JCYJ20160229123546997, JCYJ20170412140251576 and
JCYJ20170818141858021).
Keywords: alkyl azides • C-H amination • iron • homogeneous
catalysis • porphyrinoids
[1]
a) J. L. Jeffery, R. Sarpong, Chem. Sci. 2013, 4, 4092; b) M. Yang, B. Su, Y.
Wang, K. Chen, X. Jiang, Y.-F. Zhang, X.-S. Zhang, G. Chen, Y. Cheng, Z.
Cao, Q.-Y. Guo, L. Wang, Z.-J. Shi, Nat. Commun. 2014, 5, 4707; c) J. J.
Topczewski, P. J. Cabrera, N. I. Saper, M. S. Sanford, Nature 2016, 531, 220; d)
S. Munnuri, A. M. Adebesin, M. P. Paudyal, M. Yousufuddin, A. Dalipe, J. R.
Falck, J. Am. Chem. Soc. 2017, 139, 18288.
III
Figure 4. DFT-calculated geometric changes of a) [Fe (TDCPP)(NHC)]+ and b)
[Fe (TDCPP)]+ upon binding azide 1a (structures overlaid; Fe: orange, N: blue,
III
Cl: green).
Iron(III)-alkylazide adduct (Figure S2, ΔG = -1.83 kcal mol-1), which is
beneficial to subsequent decomposition and cyclization.
[2]
a) A. Sharma, J. F. Hartwig, Nature 2015, 517, 600; b) X. Huang, T. M.
Bergsten, J. T. Groves, J. Am. Chem. Soc. 2015, 137, 5300; c) X. Huang, J. T.
Groves, ACS Catal. 2016, 6, 751.
We suggest that the catalytic cycle might be initiated by thermally
driven dissociation of one NHC ligand from B to give
[Fe(TDCPP)(NHC)]+ (observable by ESI-MS analysis), which binds an
alkyl azide to give [Fe(TDCPP)(NHC)(N3R)]+, with subsequent azide
decomposition and cyclization to afford cyclic amine (Figure S3). For
radical clock substrates 19a and 19a bearing cyclopropyl rings at C4, the
B-catalyzed reaction gave 19b and 19b in 55% and 50% yields,
respectively (Scheme 3b); no cyclopropyl ring-opened alkene product(s)
[3]
a) E. T. Hennessy, T. A. Betley, Science 2013, 340, 591; b) N. C. Thacker, Z.
Lin, T. Zhang, J. C. Gilhula, C. W. Abney, W. Lin, J. Am. Chem. Soc. 2016, 138,
3501; c) B. Bagh, D. L. J. Broere, V. Sinha, P. F. Kuijpers, N. P. van Leest, B.
de Bruin, S. Demeshko, M. A. Siegler, J. I. van der Vlugt, J. Am. Chem. Soc.
2017, 139, 5117; d) D. A. Iovan, M. J. T. Wilding, Y. Baek, E. T. Hennessy, T. A.
Betley, Angew. Chem. Int. Ed. 2017, 56, 15599; Angew. Chem. 2017, 129,
15805; e) Z. Lin, N. C. Thacker, T. Sawano, T. Drake, P. Ji, G. Lan, L. Cao, S.
Liu, C. Wang, W. Lin, Chem. Sci. 2018, 9, 143.
1
was observed in the crude H NMR spectra. This is indicative of a
[4]
[5]
[6]
a) D. L. J. Broere, B. de Bruin, J. N. H. Reek, M. Lutz, S. Dechert, J. I. van der
Vlugt, J. Am. Chem. Soc. 2014, 136, 11574; b) P. F. Kuijpers, M. J. Tiekink, W.
B. Breukelaar, D. L. J. Broere, N. P. van Leest, J. I. van der Vlugt, J. N. H. Reek,
B. de Bruin, Chem. Eur. J. 2017, 23, 7945; c) M. Goswami, P. Geuijen, J. N. H.
Reek, B. de Bruin, Eur. J. Inorg. Chem. 2018, 617.
concerted or very fast re-bound mechanism for the step of C-H
amination at C4. In the presence of TEMPO, the B-catalyzed reaction of
1a gave 1b in 15% yield, with amine byproduct 1c formed in 70% yield
(Scheme 3c); no radical-trapped species was observed. Possibly,
intramolecular radical re-bound between carbon and nitrogen is faster
than the intermolecular radical coupling with TEMPO. For the reaction of
PhC(D)H(CH2)3N3 (1a) catalyzed by B at 115 C, the KIE value based
on 1b′/1b ratio is 1.9 (Scheme 3d), markedly smaller than the KIE of 5.1
at 60 oCreportedfor catalyst A.[3a] Theseresults could also be ascribedto
C-H amination by a hydrogen abstraction mechanism with fast radical re-
bound or aconcerted-likemechanism.
In conclusion, a bis-NHC Fe(III)-porphyrin B has been synthesized,
which catalyzes intramolecular C-H amination of alkyl azides at 1, 2, 3,
benzylic and allylic C-H bonds with high selectivity and up to 95% product
yield under microwave-assisted/thermal conditions. The reactions
selectively gave pyrrolidines (amination at C4-H), except for the presence
of morereactive benzylic or 3 C5-H inwhichcases piperidines were also
formed. The B-catalyzed reaction has been applied to the synthesis of
nornicotine and cis-octahydroindole andleelaminederivatives andserves
as an appealing method of constructing structurally complex and
synthetic challengingtropanes (directlyfrom an azidocycloalkane).
a) J. Bonnamour, C. Bolm, Org. Lett. 2011, 13, 2012; b) Q. Nguyen, T.
Nguyen, T. G. Driver, J. Am. Chem. Soc. 2013, 135, 620; c) I. T. Alt, B.
Plietker, Angew. Chem. Int. Ed. 2016, 55, 1519; Angew. Chem. 2016,
128, 1542; d) I. T. Alt, C. Guttroff, B. Plietker, Angew. Chem. Int. Ed.
2017, 56, 10582; Angew. Chem. 2017, 128, 10718.
K.-H. Chan, X. Guan, V. K.-Y. Lo, C.-M. Che, Angew. Chem. Int. Ed. 2014, 53,
2982; Angew. Chem. 2014, 126, 3026.
[7]
[8]
B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004, 104, 3947.
Y. Shimoyama, T. Ishizuka, H. Kotani, Y. Shiota, K. Yoshizawa, K. Mieda, T.
Ogura, T. Okajima, S. Nozawa, T. Kojima, Angew. Chem. Int. Ed. 2016, 55,
14041; Angew. Chem. 2016, 128, 14247.
[9]
Y. Liu, C.-M. Che, Chem. Eur. J. 2010, 16, 10494.
[10] CCDC 1570743 contains the supplementary crystallographic data for this
paper. These data are provided free of charge by The Cambridge
Crystallographic Data Centre.
[11] a) D. Mansuy, M. Lange, J. C. Chottard, J. F. Bartoli, B. Chevrier, R. Weiss,
Angew. Chem. Int. Ed. 1978, 17, 781; Angew. Chem. 1978, 90, 828; b) Y. Li, J.-S.
Huang, Z.-Y. Zhou, C.-M. Che, X.-Z. You, J. Am. Chem. Soc. 2002, 124, 13185.
[12] R. Lin, J. Castells, H. Rapoport, J. Org. Chem. 1998, 63, 4069.
[13] A. R. Carroll, G. K. Pierens, G. Fechner, P. de Almeida Leone, A. Ngo,
M. Simpson, E. Hyde, J. N. A. Hooper, S.-L. Boström, D. Musil, R. J.
Quinn, J. Am. Chem. Soc. 2002, 124, 13340.
Acknowledgements
[14] R. Gowda, S. V. Madhunapantula, O. F. Kuzu, A. Sharma, G. P.
Robertson. Mol. Cancer Ther. 2014, 13, 1679.
This work was supported by the State Key Laboratory of Synthetic
Chemistry, the Hong Kong Research Grants Council (HKU 17303815
and 17301817), the National Key Basic Research Program of China
This article is protected by copyright. All rights reserved.