G. A. Kraus et al. / Tetrahedron Letters 53 (2012) 4444–4446
4445
O
Acknowledgments
OH
O
O
OMe
a - c
We thank the Iowa State Department of Chemistry for under-
graduate research support for AS and for graduate student stipend
support for DC.
+
NO2
NO2
6
5
References and notes
Scheme 1. Reagents and conditions: (a) Bu4NOH, MeOH 74%; (b) NaOMe, THF 54%;
(c) air, DMSO 90%.
1. (a) Kraus, G. A.; Cho, H.; Crowley, S.; Roth, B.; Sugimoto, H.; Prugh, S. J. Org.
Chem. 1983, 48, 3439–3444; (b) Kraus, G. A.; Sugimoto, H. Tetrahedron Lett.
1978, 19, 2263–2266; (c) Kraus, G. A.; Sugimoto, H. Synth. Commun. 1977, 7,
505–508; (d) Hauser, F. M.; Rhee, R. P. J. Am. Chem. Soc. 1979, 101, 1628–1629.
2. (a) Hauser, F. M.; Yin, H. Org. Lett. 2000, 2, 1045–1047; (b) Ray, S.; Patra, A.; Mal,
D. Tetrahedron 2008, 64, 3253–3267.
3. (a) Huang, X.; Xue, J. J. Org. Chem. 2007, 72, 3965–3968; (b) Wildeman, J.;
Borgen, P. C.; Pluim, H.; Rouwette, P. H. F. M.; Van Leusen, A. M. Tetrahedron
Lett. 1978, 19, 2213–2216.
OH
OH
O
O
4. Kraus, G. A.; Kumar, G.; Phillips, G.; Michalson, K.; Mangano, M. Bioorg. Med.
Chem. Lett. 2008, 18, 2329–2332.
NO2
NO2
5. (a) Barr, L.; Easton, C. J.; Lee, K.; Lincoln, S. F. Org. Biomol. Chem. 2005, 3, 2990–
2993; (b) Knobloch, K.; Koch, J.; Keller, M.; Eberbach, W. Eur. J. Org. Chem. 2005,
2715–2733; (c) Wang, L.; Meegalla, S. K.; Fang, C.-L.; Taylor, N.; Rodrigo, R. Can.
J. Chem. 2002, 80, 728–738; (d) Hanessian, S.; Shao, Z.; Warrier, J. S. Org. Lett.
2006, 8, 4787–4790.
8
7
OH
O
OH
O
6. Shinya, K.; Furihata, K.; Teshima, Y.; Hayakawa, Y.; Seto, H. Tetrahedron Lett.
1992, 33, 7025–7028.
7. Seto H.; Hayakawa Y.; Shimazu A. (Kirin Brewery, Japan). Jpn. Kokai Tokkyo
Koho, 12 pp. JP5085998, 1993; Chem. Abstr. 1993, 119:70550.
8. (a) Koyama, H.; Kamikawa, T. J. Chem. Soc., Perkin Trans. 1 1998, 203–210; (b)
Mohri, S.; Stefinovic, M.; Snieckus, V. J. Org. Chem. 1997, 62(21), 7072–7073; (c)
Qabaja, G.; Jones, G. B. J. Org. Chem. 2000, 65, 7187–7194.
NO2
NO2
10
9
9. (a) Hellwinkel, D.; Bohnet, S. Chem. Ber. 1987, 120, 1151–1173; (b) Gandler, J.
R.; Saunders, O. L.; Barbosa, R. J. Org. Chem. 1997, 62, 4677–4682.
10. Danikiewicz, W.; Makosza, M. Tetrahedron Lett. 1985, 26, 3599–3600.
11. Firouzabadi, H.; Sharifi, A. Synthesis 1992, 10, 999–1002.
Figure 2. Adducts of 5 with enones.
12. Compound 10: Ettlinger, M. G. J. Am. Chem. Soc. 1950, 72, 3666–3672.
13. Hauser, F. M.; Pogany, S. A. Synthesis 1980, 814–815.
14. Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 1386.
15. Representative experimental:
OBs O
OBs O
a, b
OEt
CH3
OEt
Representative synthesis of compound 7
NO2
To a solution of nitro ester 5 (0.196 g, 1.0 mmol) and 1H-inden-1-one (0.130 g,
1.0 mmol) in acetonitrile (3 mL) was added triton B solution in methanol
(0.085 mL, 40% w/w, 0.2 equiv) at 0 °C. The temperature was allowed to reach
rt and the reaction was monitored by TLC. Then the reaction was quenched
with saturated NH4Cl solution and extracted with EtOAc. Purification on
column chromatography on silica gel using EtOAc/hexane as eluent gave
0.221 g of the open-chain intermediate in 68% yield. Intermediate: mixture of
11
12
Scheme 2. Reagents and conditions: (a) NBS, AIBN, benzene reflux, 75%; (b) AgNO2,
ether 0 °CÀrt, 50%.
two diastereoisomers in
a
ratio of 3:2. Major isomer: 1H NMR (CDCl3,
400 MHz): 8.06 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.77 (m, 1H), 7.71
(m, 2H), 7.56 (m, 2H), 7.39 (m, H), 7.07 (d, J = 8.0 Hz, 1H), 4.42 (m, 1H), 3.73 (s,
3H), 2.81 (m, 2H), 2.42 (m, 1H). 13C NMR (CDCl3, 100 MHz):203.7, 166.7, 151.7,
137.8, 135.6, 134.8, 134.2, 133.4, 131.8, 130.2, 129.8, 127.6, 126.0, 124.2, 88.7,
63.0, 42.6, 40.9. Minor isomer: 1H NMR (CDCl3, 400 MHz): 7.99 (d, J = 8.0 Hz,
1H), 7.79 (d, J = 8.0 Hz, 1H), 7.61 (m, 2H), 7.50 (m, 2H), 7.38 (m, 1H), 6.79 (d,
J = 10.8 Hz, 1H), 6.66 (m, 1H), 4.63 (m, 1H), 3.82 (s, 3H), 2.80 (m, 2H), 2.41 (m,
1H). 13C NMR (CD3COCD3, 100 MHz): 203.2, 167.2, 152.9, 137.1, 135.0, 134.5,
134.0, 133.4, 131.4, 130.4, 129.3, 127.6, 126.1, 124.5, 88.4, 52.8, 42.0, 40.0.
To a solution of intermediate (0.174 g, 0.535 mmol) in THF (20 mL) was added
a solution of sodium methoxide in methanol (0.238 mL, 4.5 M, 2 equiv) at 0 °C,
and it was stirred at rt. After the disappearance of the starting material on TLC,
it was quenched with ice, followed by a saturated NH4Cl solution. The crude
product was extracted with EtOAc, dried over MgSO4, and the solvent was
removed under vacuo. Then the crude product was dissolved in toluene (2 mL)
O
CH3
a - c
CH3
O
O
OSO2Ph
13
14
Scheme 3. Reagents and conditions: (a) AlCl3, NaCl, 200 °C, 71%; (b) Et3N, PhSO2Cl,
THF, rt, 87%; (c) HIO3, DMSO 50 °C, 87%.
OR OH
O
a, b
and
2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(0.123 g,
0.554 mmol,
12
+ 14
1 equiv) was added in portion at 0 °C. The reaction was stirred at rt. After
the reaction was finished ice was added and it was extracted with EtOAc and
purification on column chromatography on silica gel gave 0.100 gram of
compound 7 in 64% yield. Compound 7: 1H NMR (CD3COCD3, 300 MHz): 8.25 (t,
J = 7.8 Hz, 2H), 8.01 (d, J = 7.8 Hz, 1H), 7.70 (m, 2H), 7.62 (m, 2H), 7.31 (t,
J = 7.8 Hz, 1H). (EI) m/z Calculated for C17H9NO4: 291.0532, Found: 291.0536.
Compound 6: 1H NMR (CD3COCD3, 400 MHz): 8.46 (m, 2H), 7.96 (t, J = 8.0 Hz,
1H), 7.75 (t, J = 8.0 Hz, 1H), 3.58 (m, 2H), 2.58 (m, 2H). HRMS (EI) m/z
Calculated for C13H9NO4: 243.0532; Found: 243.0535.
CH3
RO
15: R = PhSO2
16: R = H
Scheme 4. Reagents and conditions: (a) DBU, CH2Cl2, 0 °C, 72%; (b) 2.2 equiv LDA,
THF, À78–0 °C, 23%.
Compound 8: 1H NMR (CDCl3/CD3COCD3, 400 MHz): 8.40 (d, J = 8.4 Hz, 1H),
8.33 (d, J = 8.4 Hz, 1H), 7.81 (t, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 5.98 (m,
1H), 5.61 (m, 1H), 4.44 (m, 1H), 3.43 (m, 2H), 2.68 (m, 1H), 1.80 (m, 2H).
Compound 9: 1H NMR (CDCl3/CD3COCD3, 400 MHz): 8.38 (d, J = 8.0 Hz, 1H),
8.33 (d, J = 8.0 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 5.85 (m,
1H), 5.71 (m, 1H), 4.23 (m, 1H), 3.09 (m, 1H), 2.59 (m, 2H), 2.42 (m, 2H). HRMS
(EI) m/z Calculated for C17H13NO4:295.0845; Found: 295.0848.
In summary, the Michael addition/Claisen condensation se-
quence affords good overall yields of tricyclic and tetracyclic ad-
ducts.15 It provides an effective route to tetracyclic stealthin
analogs. This pathway will permit the synthesis of an array of ana-
logs similar to 15 for biological testing.
10-hydroxy-2-methyl-11-oxo-11H-benzo[b]fluorene-4, 9-diyl dibenzenesulfonate
(15). To
a stirred solution of ethyl 2-(nitromethyl)-6-((phenylsulfonyl)
oxy)benzoate, 12 (968 mg, 2.65 mmol) and 6-methyl-1-oxo-1H-inden-4-yl
benzenesulfonate, 14 (398 mg, 1.33 mmol) in 10 mL acetonitrile was added