10.1002/anie.202007922
Angewandte Chemie International Edition
COMMUNICATION
regioisomeric products arising from the reversible opening of C to
D. In our case, using PPh3 as the ligand and in the absence of
amine, carboxylic acid 2 (Scheme 2) was formed whereas
indanone 7 was not. In the presence of amine, the indanone was
also not observed. As shown in Scheme 5a, the CO insertion from
D and nucleophilic attack of the amine to give the amide product
3 occur at room temperature, and therefore are faster than the
pathway leading to the indanone 7 using PPh3 as the ligand.
Keywords: amides • C–H activation • carbonylation • domino
reactions • palladium
[1]
Initial work: O. Baudoin, A. Herrbach, F. Guéritte, Angew. Chem. Int. Ed.
2003, 42, 5736.
[2]
[3]
O. Baudoin, Acc. Chem. Res. 2017, 50, 1114.
Á. Gutiérrez-Bonet, F. Juliá-Hernández, B. de Luis, R. Martin, J. Am.
Chem. Soc. 2016, 138, 6384.
[4]
[5]
[6]
[7]
Z. Wu, D. Ma, B. Zhou, X. Ji, X. Ma, X. Wang, Y. Zhang, Angew. Chem.
Int. Ed. 2017, 56, 12288.
O
S.-L. Cai, Y. Li, C. Yang, J. Sheng, X.-S. Wang, ACS Catal. 2019, 9,
10299.
NHR
For reviews: a) S. Ma, Z. Gu, Angew. Chem. Int. Ed. 2005, 44, 7512; b)
F. Shi, R. C. Larock, Top. Curr. Chem. 2010, 292, 123.
a) G. Dyker, Angew. Chem. Int. Ed. 1992, 31, 1023; b) G. Dyker, J. Org.
Chem. 1993, 58, 6426; c) G. Dyker, Angew. Chem. Int. Ed. 1994, 33,
103; d) G. Dyker, Chem. Ber. 1994, 127, 739.
Br
3
1
PivOH
nucleophilic attack
Pd0L2
fast
RNH2
reductive
oxidative
adition
[8]
[9]
a) J. Hitce, P. Retailleau, O. Baudoin, Chem. Eur. J. 2007, 13, 792; b) E.
Motti, M. Catellani, Adv. Synth. Catal. 2008, 350, 565; c) C. B. Bheeter,
R. Jin, J. K. Bera, P. H. Dixneuf, H. Doucet, Adv. Synth. Catal. 2014, 356,
119; d) C. E. Kefalidis, M. Davi, P. M. Holstein, E. Clot, O. Baudoin, J.
Org. Chem. 2014, 79, 11903.
elimination
O
PdIILOPiv
PdIIL2Br
A
E
a) T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am.
Chem. Soc., 2005, 127, 4685; b) J. Pan, M. Su, S. L. Buchwald, Angew.
Chem. Int. Ed. 2011, 50, 8647.
CsOPiv
ligand
exgange
CO insertion
[10] B. Tan, L. Bai, P. Ding, J. Liu, Y. Wang, X. Luan, Angew. Chem. Int. Ed.
2019, 58, 1474.
O
7
CO
CsBr + L
[11] R. Rocaboy, I. Anastasiou, O. Baudoin, Angew. Chem. Int. Ed. 2019, 58,
14625.
CO insertion
reductive elimination
slow
PdIILOPiv
H
[12] A. Clemenceau, P. Thesmar, M. Gicquel, A. Le Flohic, O. Baudoin,
ChemRxiv 2020, DOI : 10.26434/chemrxiv.12408839.v1
[13] For Pd-catalyzed intermolecular C(sp3)–H activation/amino- or
alkoxycarbonylations: a) P. Xie, Y. Xie, B. Qian, H. Zhou, C. Xia, H.
Huang, J. Am. Chem. Soc. 2012, 134, 9902; b) P. Xie, C. Xia, H. Huang,
Org. Lett. 2013, 15, 3370; c) H. Liu, G. Laurenczy, N. Yan, P. J. Dyson,
Chem. Commun. 2014, 50, 341; d) L. Lu, R. Shi, L. Liu, J. Yan, F. Lu, A.
Lei, Chem. Eur. J. 2016, 22, 14484; e) K. Tanaka, W. R. Ewing, J.-Q. Yu,
J. Am. Chem. Soc. 2019, 141, 15494.
PdIILOPiv
B
D
C(sp3)–H activation
protonation
rate-limiting
PdII
L
PivOH
PivOH
C
[14] For
Pd-catalyzed
intramolecular
C(sp3)–H
activation/amino-
Scheme 7. Mechanistic proposal. L = PPh3 or CO.
carbonylations: a) E. J. Yoo, M. Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2010,
132, 17378; b) S. Li, G. Chen, C.-G. Feng, W. Gong, J.-Q. Yu, J. Am.
Chem. Soc. 2014, 136, 5267; c) C. Wang, L. Zhang, C. Chen, J. Han, Y.
Yao, Y. Zhao, Chem. Sci. 2015, 6, 4610; d) J. Calleja, D. Pla, T. W.
Gorman, V. Domingo, B. Haffemayer, M. J. Gaunt, Nat. Chem. 2015, 7,
1009; e) P.-L. Wang, Y. Li, Y. Wu, C. Li, Q. Lan, X.-S. Wang, Org. Lett.
2015, 17, 3698; f) D. Willcox, B. G. N. Chappell, K. F. Hogg, J. Calleja,
A. P. Smalley, M. J. Gaunt Science 2016, 354, 851; g) E. Hernando, J.
Villalva, A. M. Martínez, I. Alonso, N. Rodríguez, R. Goḿez Arrayaś, J.
C.Carretero, ACS Catal. 2016, 6, 6868; h) J. R. Cabrera-Pardo, A.
Trowbridge, M. Nappi, K. Ozaki, M. J. Gaunt, Angew. Chem. Int. Ed.
2017, 56, 11958; i) K. F. Hogg, A. Trowbridge, A. Alvarez-Pérez, M. J.
Gaunt, Chem. Sci. 2017, 8, 8198; j) Z. M. Png, J. R. Cabrera-Pardo, J.
Peiró Cadahía, M. J. Gaunt, Chem. Sci. 2018, 9, 7628.
In conclusion, the first carbonylative C(sp3)–H activation
reaction proceeding via 1,4-Pd shift was developed. A variety of
amides and esters bearing a quaternary b carbon was produced
by amino- or alkoxycarbonylation in moderate to good yields.[24]
Mechanistic studies showed that the aminocarbonylation of the s-
alkylpalladium intermediate is fast using PPh3 as the ligand,
thereby leading to the amide product at the expense of the
previously described indanone.
Acknowledgements
[15] See the Supporting information for details.
[16] T. Kanzian, T. A. Nigst A. Maier, S. Pichl, H. Mayr, Eur. J. Org. Chem.
2009, 6379.
This work was financially supported by the University of Basel and
National Scholarship Program of Slovak Republic. We thank Dr.
D. Häussinger for NMR experiments, Dr. M. Pfeffer for MS
analyses, P. Thesmar and S. Geigle for helpful suggestions.
[17] S. D. Friis, A. T. Lindhardt, T. Skrydstrup, Acc. Chem. Res. 2016, 49,
594.
[18] T. B. Phan, H. Mayr, Can. J. Chem. 2005, 83, 1554.
[19] L. Wu, Y. Hao, Y. Liu, Q. Wang, Org. Biomol. Chem. 2019, 17, 6762.
[20] E. Gutiérrez, M. C. Nicasio, M. Paneque, C. Ruiz, V. Salazar, J.
Organomet. Chem. 1997, 549, 167.
[21] J. Cámpora, J. A. López, P. Palma, D. del Rio, E. Carmona, P. Valerga,
C. Graiff, A. Tiripicchio, Inorg. Chem. 2001, 40, 4116.
Conflict of interest
[22] M. Chaumontet, R. Piccardi, N. Audic, J. Hitce, J.-L. Peglion, E. Clot, O.
Baudoin, J. Am. Chem. Soc. 2008, 130, 15157.
The authors declare no conflict of interest.
[23] a) M. Lafrance, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2007, 129,
14570; b) C. E. Kefalidis, O. Baudoin, E. Clot, Dalton Trans. 2010, 39,
4
This article is protected by copyright. All rights reserved.