Organic Letters
Letter
Ellman, J. A. Angew. Chem., Int. Ed. 2013, 52, 629. (e) Yoshino, T.;
Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2013, 52,
2207.
Scheme 7. Catalytic Dichotomy between C−C (Rh) and C−
N (Ru) Amidations
(4) For selected examples of C−H addition to isocyanates, see:
(a) Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Takai, K. J. Am. Chem.
Soc. 2006, 128, 202. (b) Kuninobu, Y.; Tokunaga, Y.; Takai, K. Chem.
Lett. 2007, 36, 872. (c) Hesp, K. D.; Bergman, R. G.; Ellman, J. A. J.
Am. Chem. Soc. 2011, 133, 11430. (d) Muralirajan, K.; Parthasarathy,
K.; Cheng, C.-H. Org. Lett. 2012, 14, 4262. (e) Zhou, B.; Hou, W.;
Yang, Y.; Li, Y. Chem.Eur. J. 2013, 19, 4701.
(5) Curtius, T. Ber. Dtsch. Chem. Ges. 1890, 23, 3023.
(6) (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew.
̈
Chem., Int. Ed. 2005, 44, 5188. (b) Lebel, H.; Leogane, O.; Huard, K.;
Lectard, S. Pure Appl. Chem. 2006, 78, 363.
(7) (a) Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570.
(b) Nguyen, Q.; Sun, K.; Driver, T. G. J. Am. Chem. Soc. 2012, 134,
7262. (c) Nishioka, Y.; Uchida, T.; Katsuki, T. Angew. Chem., Int. Ed.
2013, 52, 1739. (d) Hennessy, E. T.; Betley, T. A. Science 2013, 340,
591. (e) Yu, D.-G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135,
8802. (f) Lian, Y.; Hummel, J. R.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2013, 135, 12548.
(8) (a) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang,
S. J. Am. Chem. Soc. 2012, 134, 9110. (b) Ryu, J.; Shin, K.; Park, S. H.;
Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904. (c) Shin,
K.; Baek, Y.; Chang, S. Angew. Chem., Int. Ed. 2013, 52, 8031. (d) Park,
S. H.; Park, Y.; Chang, S. Org. Synth. 2014, 91, 52. (e) Kim, H. J.;
Ajitha, M. J.; Lee, Y.; Ryu, J.; Kim, J.; Lee, Y.; Jung, Y.; Chang, S. J. Am.
Chem. Soc. 2014, 136, 1132. (f) Park, S. H.; Kwak, J.; Shin, K.; Ryu, J.;
Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 2492.
negligible residing in low concentration, a direct reaction of acyl
azides with a ruthenacyclic intermediate (7) will be
predominant (k1 ≫ k2).
In summary, the dual reactivity of acyl azides was controlled
in the C−H functionalization by altering catalyst systems.
Rhodium catalysis enabled the selective C−C amidation with
isocyanates in situ generated from acyl azides. In contrast, a
ruthenium catalyst system facilitated the selective C−N
amidation with acyl azides.18 Mechanistic studies revealed
that the dichotomy between two catalytic systems might
originate from chemoselective and kinetic control. This work
opens the way to utilizing acyl azides in C−H functionalization
by controlling their dual reactivity as a nitrogen or carbon
source.
(9) Kim, J.; Kim, J.; Chang, S. Chem.Eur. J. 2013, 19, 7328.
(10) (a) Ryu, J.; Kwak, J.; Shin, K.; Lee, D.; Chang, S. J. Am. Chem.
Soc. 2013, 135, 12861. (b) Lee, D.; Kim, Y.; Chang, S. J. Org. Chem.
2013, 78, 11102. (c) Kim, J.; Chang, S. Angew. Chem., Int. Ed. 2014,
53, 2203.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedure and characterization of new com-
pounds (1H and 13C NMR spectra). This material is available
(11) (a) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem.,
Int. Ed. 2008, 47, 4019. (b) Guimond, N.; Gouliaras, C.; Fagnou, K. J.
Am. Chem. Soc. 2010, 132, 6908. (c) Rakshit, S.; Grohmann, C.;
Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (d) Li, H.; Li,
Y.; Zhang, X.-S.; Chen, K.; Wang, X.; Shi, Z.-J. J. Am. Chem. Soc. 2011,
133, 15244. (e) Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am.
AUTHOR INFORMATION
Corresponding Author
■
Chem. Soc. 2012, 134, 13565. (f) Hyster, T. K.; Knorr, L.; Ward, T. R.;
̈
Notes
Rovis, T. Science 2012, 338, 500.
(12) White, C.; Thompson, S. J.; Maitlis, P. M. J. Chem. Soc., Dalton
Trans. 1977, 1654.
(13) An iridium catalyst system (Cp*IrIII, ref 10a) showed low
reactivity when 2-phenylpyridine was employed as a substrate (see the
Supporting Information.).
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This research was supported by the Institute of Basic Science
(IBS).
■
(14) (a) Ackermann, L. Chem. Rev. 2011, 111, 1315. (b) Arockiam, P.
B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
(c) Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
(15) See the Supporting Information for details.
REFERENCES
■
(16) For selected examples of the additive effects of carboxylates in
Ru-catalyzed C−H functionalizations, see: (a) Ackermann, L.; Vicente,
R.; Althammer, A. Org. Lett. 2008, 10, 2299. (b) Ackermann, L.;
Vicente, R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032.
(c) Flegeau, E. F.; Bruneau, C.; Dixneuf, P. H.; Jutand, A. J. Am. Chem.
Soc. 2011, 133, 10161.
(17) Rhodacylic intermediates 5, 6 and ruthenacyclic complex 7 are
well characterized in the previous reports (see the Supporting
Information).
(1) (a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int.
Ed. 2009, 48, 9792. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A.
Chem. Rev. 2010, 110, 624. (c) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147. (d) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011,
111, 1215. (e) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem.
Res. 2012, 45, 788. (f) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed.
2013, 52, 11726.
(2) (a) Jun, C.-H.; Moon, C. W.; Lee, D.-Y. Chem.Eur. J. 2002, 8,
2422. (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2009, 48, 5094. (c) Satoh, T.; Miura, M. Chem.Eur. J.
2010, 16, 11212. (d) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012,
41, 3651.
(18) When cyclohexanecarbonyl azide was applied to either Rh- or
Ru-catalyzed amidation conditions, the reactions were sluggish only
leading to low conversions (<30%).
(3) For selected examples of C−H additions to C−N multiple bonds,
see: (a) Zhou, C.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 2302.
(b) Tsai, A. S.; Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2011, 133, 1248. (c) Li, Y.; Li, B.-J.; Wang, W.-H.; Huang,
W.-P.; Zhang, X.-S.; Chen, K.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011,
50, 2115. (d) Lian, Y.; Huber, T.; Hesp, K. D.; Bergman, R. G.;
2025
dx.doi.org/10.1021/ol500602b | Org. Lett. 2014, 16, 2022−2025