Journal of the American Chemical Society
Communication
Chen, P.; Liu, G. ACS Catal. 2013, 3, 178. (c) Wang, A.; Jiang, H. J. Am.
Chem. Soc. 2008, 130, 5030. (d) Liu, Y.; Song, F.; Guo, S. J. Am. Chem.
Soc. 2006, 128, 11332. (e) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J.
Am. Chem. Soc. 2003, 125, 9294. (f) Shimada, T.; Yamamoto, Y. J. Am.
Chem. Soc. 2003, 125, 6646.
(5) (a) Wei, Y.; Deb, I.; Yoshikai, N. J. Am. Chem. Soc. 2012, 134, 9098.
(b) Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 9220.
(c) Yoshikai, N.; Wei, Y. Asian J. Org. Chem. 2013, 2, 466.
(6) (a) Chen, Z.; Lu, B.; Ding, Z.; Gao, K.; Yoshikai, N. Org. Lett. 2013,
15, 1966. (b) Shi, Z.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2013,
52, 4892. (c) Meng, L.; Wu, K.; Liu, C.; Lei, A. Chem. Commun. 2013, 49,
5853.
Ring opening of the azetidine moiety of J would then afford furan
3 and formamide 4.
Regardless of the mechanistic ambiguity, the result of the
crossover experiment (Scheme 5b) implies the possibility of a
three-component furan synthesis using imine, alkynyliodonium-
(III) reagent, and carboxylic acid. Indeed, a preliminary
experiment using imine 1c, phenyl(2-phenylethynyl)iodonium
tosylate, and benzoic acid afforded the desired trisubstituted
furan 11 in 31% yield (eq 3).
(7) (a) Hajra, A.; Wei, Y.; Yoshikai, N. Org. Lett. 2012, 14, 5488.
(b) Girard, S. A.; Hu, X.; Knauber, T.; Zhou, F.; Simon, M.-O.; Deng,
G.-J.; Li, C.-J. Org. Lett. 2012, 14, 5606.
(8) For transition-metal-free α-alkynylation of carbonyl compounds
with EBXs, see: (a) Gonzal
2010, 16, 9457. (b) Gonzal
Adv. Synth. Catal. 2013, 355, 1631.
(9) For a review of transition-metal-mediated synthesis of pyrroles and
furans, see: Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V.
Chem. Rev. 2013, 113, 3084.
(10) While no example of cycloisomerization of propargyl imine to
pyrrole has been reported, its isomers (e.g., alkynyl imine, allenyl imine)
are known to participate in such a reaction.
(11) (a) Utimoto, K. Pure Appl. Chem. 1983, 55, 1845. (b) Fukuda, Y.;
Shiragami, H.; Utimoto, K.; Nozaki, H. J. Org. Chem. 1991, 56, 5816.
(c) Sheng, H.; Lin, S.; Huang, Y. Synthesis 1987, 1022.
(12) The mechanism of the formation of 7 is not clear at this moment.
(13) Campo, M. A.; Larock, R. C. J. Org. Chem. 2002, 67, 5616.
(14) Wegner, H. A.; Scott, L. T.; de Meijere, A. J. Org. Chem. 2003, 68,
883.
(15) Hatakeyama, T.; Hashimoto, S.; Nakamura, M. Org. Lett. 2011,
13, 2130.
(16) The reaction of 1c and 2a in the presence of TEMPO (2 equiv)
afforded 3ca without a significant decrease in the yield (70%), suggesting
that a free radical is not involved.
́
ez, D. F.; Brand, J. P.; Waser, J. Chem.Eur. J.
́
ez, D. F.; Brand, J. P.; Mondiere, R.; Waser, J.
̀
In summary, we have found a palladium(II)-catalyzed coupling
reaction of imines and EBXs to afford multisubstituted furans17
that involves unique condensation and fragmentation processes.
Our current studies are focused on the synthetic potential and
mechanistic aspects of the three-component coupling of imine,
alkynyliodonium reagent, and carboxylic acid.
ASSOCIATED CONTENT
* Supporting Information
Detailed experimental procedures, compound characterization,
and crystallographic data (CIF). This material is available free of
■
S
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
†B.L. and J.W. contributed equally.
(17) For transition-metal-mediated furan synthesis through cross-
coupling of two reactants, see ref 9 and the following recent examples:
(a) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem.
Soc. 2012, 134, 5766. (b) Kramer, S.; Skrydstrup, T. Angew. Chem., Int.
Ed. 2012, 51, 4681. (c) Huang, X.; Peng, B.; Luparia, M.; Gomes, L. F.
R.; Veiros, L. F.; Maulide, N. Angew. Chem., Int. Ed. 2012, 51, 8886.
(d) Cui, X.; Xu, X.; Wojtas, L.; Kim, M. M.; Zhang, X. P. J. Am. Chem.
Soc. 2012, 134, 19981. (e) Lian, Y.; Huber, T.; Hesp, K. D.; Bergman, R.
G.; Ellman, J. A. Angew. Chem., Int. Ed. 2013, 52, 629. (f) Zheng, M.;
Huang, L.; Wu, W.; Jiang, H. Org. Lett. 2013, 15, 1838. (g) Yang, Y.; Yao,
J.; Zhang, Y. Org. Lett. 2013, 15, 3206.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Research Foundation
Singapore (NRF-RF-2009-05) and Nanyang Technological
University. We thank Dr. Yongxin Li (Nanyang Technological
University) for assistance with X-ray crystallographic analysis.
REFERENCES
■
(1) For selected reviews, see: (a) Wirth, T. Angew. Chem., Int. Ed. 2005,
44, 3656. (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
(c) Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121. (d) Brand, J. P.;
Gonzalez, D. F.; Nicolai, S.; Waser, J. Chem. Commun. 2011, 47, 102.
(2) (a) Zhdankin, V. V.; Stang, P. J. Tetrahedron 1998, 54, 10927.
(b) Brand, J. P.; Waser, J. Chem. Soc. Rev. 2012, 41, 4165.
(3) For selected examples of transition metal-catalyzed reactions of
EBXs, see: (a) Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem., Int.
Ed. 2009, 48, 9346. (b) Nicolai, S.; Erard, S.; Gonzalez, D. F.; Waser, J.
́
Org. Lett. 2010, 12, 384. (c) Brand, J. P.; Waser, J. Angew. Chem., Int. Ed.
2010, 49, 7304. (d) Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H.
Org. Lett. 2010, 12, 3963. (e) Nicolai, S.; Piemontesi, C.; Waser, J.
Angew. Chem., Int. Ed. 2011, 50, 4680. (f) Tolnai, G. L.; Ganss, S.; Brand,
J. P.; Waser, J. Org. Lett. 2013, 15, 112. (g) Li, Y.; Brand, J. P.; Waser, J.
Angew. Chem., Int. Ed. 2013, 52, 6743. (h) Liu, X.; Wang, Z.; Cheng, X.;
Li, C. J. Am. Chem. Soc. 2013, 135, 14330. (i) Wang, Z.; Li, X.; Huang, Y.
Angew. Chem., Int. Ed. 2013, 52, 14219. (j) Feng, C.; Loh, T.-P. Angew.
Chem., Int. Ed. 2014, 53, 2722.
(4) For examples of transition-metal-catalyzed reactions involving C
C bond cleavage except for alkyne metathesis, see: (a) Shen, T.; Wang,
T.; Qin, C.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 6677. (b) Liu, Q.;
D
dx.doi.org/10.1021/ja5059795 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX