ORGANIC
LETTERS
2012
Vol. 14, No. 17
4694–4697
A Proline-Based Phosphine Template for
Staudinger Ligation
Chung-Min Park,† Wei Niu,‡ Chunrong Liu,† Tyler D. Biggs,† Jiantao Guo,‡ and
Ming Xian*,†
Department of Chemistry, Washington State University, Pullman, Washington 99164,
United States, and Department of Chemistry, University of Nebraska;Lincoln,
Lincoln, Nebraska 68588, United States
Received August 14, 2012
ABSTRACT
A proline-based phosphine template enabling a rapid Staudinger ligation of azide-containing substrates under mild conditions is reported. This
reaction has a second-order rate constant of 1.12 MÀ1 sÀ1. It is expected that the proline-based Staudinger ligation strategy will be a useful method
for bioconjugation and proline based peptide coupling.
Bioorthogonal reactions, in which the coupling partners
react selectively without interference with other biological
functionalities, are important tools for chemical biology
research.1 The development of Staudinger ligation by
Bertozzi and co-workers is a seminal contribution to
bioorthogonal chemistry.1,2 Utilizing azides and phos-
phines asorthogonalspecies, Staudinger ligation promotes
a chemoselective amide bond formation under mild and
physiological conditions. It has been employed in labeling
a wide range of azide-containing biomolecules such as
glycans,2a DNA,3 lipids, and proteins.4 Typically, the
Staudinger ligation satisfies the criteria for bioorthogonal
reactions such as good reactivity, selectivity, biocompat-
ibility, etc. Currently the structural templates for Staudin-
ger ligation are limited. Almost all of the substrates used in
regular Staudinger ligation are triphenyl substituted phos-
phine derivatives. In the ‘traceless’ version of Staudinger
ligation developed by Raines et al., some alkyl-diphenyl-
substituted phosphine derivatives are also used.5 With
these substrates, the kinetics of the reaction are somewhat
slow (typical second-order rate constant of 0.002 MÀ1 sÀ1),
which mandates the use of high concentrations of phos-
phine reagents.6 Here we report a proline-based template
for the design of Staudinger ligation substrates. It allows
fast kinetics with azide substrates and provides an alter-
native way to construct peptide adducts.
† Washington State University.
‡ University of Nebraska;Lincoln.
The studies by Raines et al. revealed that a favorable
n f π* electrostatic interaction exists between the amide
oxygen and ester carbonyl in N-formylproline phenylesters
(1) (a) Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009, 48,
6974–6998. (b) Prescher, J. A.; Dube, D. H.; Bertozzi, C. R. Nature 2004,
430, 873–877. (c) Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1,
13–21. (d) Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666–
676. (e) van Berkel, S. S.; van Eldijk, M. B.; van Hest, J. C. M. Angew.
Chem., Int. Ed. 2011, 50, 8806–8827.
(2) (a) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007–2010.
(b) Kohn, S. M.; Breinbauer, R. Angew. Chem., Int. Ed. 2004, 43,
3106–3116.
(3) (a) Franzini, R. M.; Kool, E. T. J. Am. Chem. Soc. 2009, 131,
16021–16023. (b) Comstock, L. R.; Rajski, S. R. J. Am. Chem. Soc. 2005,
127, 14136–14137.
(4) (a) Hang, H. C.; Geutjes, E. J.; Grotenbreg, G.; Pollington, A. M.;
Bijlmakers, M. J.; Ploegh, H. L. J. Am. Chem. Soc. 2007, 129, 2744–2745.
(b) Tsao, M. L.; Tian, F.; Schultz, P. G. ChemBioChem 2005, 6, 2147–
2149. (c) Yanagisawa, T.; Ishii, R.; Fukunaga, R.; Kobayashi, T.;
Sakamoto, K.; Yokoyama, S. Chem. Biol. 2008, 15, 1187–1197.
(5) (a) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2001,
3, 9–12. (b) McGrath, N. A.; Raines, R. T. Acc. Chem. Res. 2011, 44,
752–761.
(6) (a) Lin, F. L.; Hoyt, H. M.; van Halbeek, H.; Bergman, R. G.;
Bertozzi, C. R. J. Am. Chem. Soc. 2005, 127, 2686–2695. (b) Tam, A.;
Soellner, M. B.; Raines, R. T. J. Am. Chem. Soc. 2007, 129, 11421–
11430. (c) Ning, X.; Guo, J.; Wolfert, M. A.; Boons, G. J. Angew. Chem.,
Int. Ed. 2008, 47, 2253–2255. (d) Poloukhtine, A. A.; Mbua, N. E.;
Wolfert, M. A.; Boons, G. J.; Popik, V. V. J. Am. Chem. Soc. 2009, 131,
15769–15776. (e) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard,
N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R.
Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 16793–16797.
r
10.1021/ol3022484
Published on Web 08/27/2012
2012 American Chemical Society