G. An et al. / Tetrahedron Letters 44 (2003) 2183–2186
2185
However, with an electron withdrawing group, i.e. the
chloro group of p-chloroaniline (entries 15–18), the
reaction products were the same as in the aniline cases
and also follow the oxaziridine ring formation and
Lewis acid mediated ring opening with the subsequent
migration of the aryl group or the hydrogen atom to
the electron deficient nitrogen atom.
6. (a) Kitagawa, O.; Velde, D. V.; Dutta, D.; Morton, M.;
Takusagawa, F.; Aube´, J. J. Am. Chem. Soc. 1995, 117,
5169; (b) Davis, F. A.; Weismiller, M. C.; Murphy, C. K.;
Reddy, R. T.; Chen, B. C. J. Org. Chem. 1992, 57, 7274;
(c) Aube´, J.; Hammond, M.; Gherardini, E.;
Takusagawa, F. J. Am. Chem. Soc. 1991, 113, 499; (d)
Duhamel, P.; Be´nard, D.; Plaquevent, J.-C. Tetrahedron
Lett. 1985, 26, 6065; (e) Emmons, W. D.; Pagano, A. S.
In Organic Syntheses; Baumgarten, H. E., Ed.; John
Wiley & Sons: New York, 1973; Coll. Vol. 5, pp. 191–
193; (f) Emmons, W. D. J. Am. Chem. Soc. 1957, 79,
5739.
7. General procedure for the preparation of aldimines: To a
solution of aryl carboxaldehyde, trans-cinnamaldehyde,
or trans-a-methylcinnamaldehyde (5 mmol) in CHCl3 (20
mL) were added aniline, p-anisidine, or p-chloroaniline
(10 mmol) and molecular sieves (1.0 g) at ambient tem-
perature. After stirring for a certain period of time, the
crude mixture was rinsed with K2CO3–brine solution
(3×20 mL) and the crude product was concentrated by
rotary-evaporation. The purity of the crude products was
checked by 1H NMR spectroscopy. The products were
sufficiently pure to use for next reaction.
1
The products of this oxidation were identified by a H
NMR comparison with that of known compounds
(entries 1–8, 11–16, 18).4b,c,9 Otherwise, these were fully
1
characterized by IR, H and 13C NMR, and HRMS
analysis (entries 9, 10, 17).10–12 In the case of the
electron-withdrawing substituent on the aryl group
(entries 5–8) and in p-anisidine (entries 11–14), a deu-
terium exchange of the amide NH was observed in the
1H NMR spectra.
In summary, we have developed an efficient method for
the conversion of various aldimines to their correspond-
ing N,N-diarylformamides or amides by m-CPBA and
BF3·OEt2. The hydrolysis of N,N-diarylformamides will
provide diarylamines and this method could be a valu-
able alternative to the Chapman rearrangement13 and
the Ullmann–Goldberg condensation.14
General procedure for the preparation of amides: To a
solution of aldimine (5 mmol) in anhydrous CHCl3 (15
mL) were added m-CPBA (72%, 5.0 mmol) in anhydrous
CHCl3 (15 mL) and BF3·OEt2 (1.5 mmol) at 0°C. The
resulting reaction mixture was stirred for 6 h at ambient
temperature. The reaction mixture was diluted with
CHCl3 (15 mL) and washed with saturated Na2CO3
solution (3×20 mL). The organic layer was dried over
anhydrous MgSO4 and concentrated by rotary-evapora-
tion. The residue was purified by flash column chro-
matography (EtOAc/n-hexane).
Acknowledgements
This work, carried out in 2001, was supported by
Hanyang University, Korea. M.K. would also like to
thank the Hankyong National University Research
Fund for providing partial support in 2001.
8. Splitter, J. S.; Calvin, M. J. Org. Chem. 1965, 30, 3427.
9. (a) Chakraborti, A. K.; Sharma, L.; Nayak, M. K. J.
Org. Chem. 2002, 67, 6406; (b) Arisawa, M.; Yamaguchi,
M. Org. Lett. 2001, 3, 311; (c) Thakur, A. J.; Boruah, A.;
Prajapati, D.; Sandhu, J. S. Synth. Commun. 2000, 30,
2105; (d) Stauffer, S. R.; Sun, J.; Katzenellenbogen, B. S.;
Katzenellenbogen, J. A. Bioorg. Med. Chem. 2000, 8,
1293; (e) Anilkumar, R.; Chandrasekhar, S. Tetrahedron
Lett. 2000, 41, 5427; (f) Kunishima, M.; Kawachi, C.;
Morita, J.; Terao, K.; Iwasaki, F.; Tani, S. Tetrahedron
1999, 55, 13159; (g) Meshram, H. M.; Reddy, G. S.;
Reddy, M. M.; Yadav, J. S. Tetrahedron Lett. 1998, 39,
4103; (h) Barton, D. H. R.; Ferreira, J. A. Tetrahedron
1996, 52, 9347; (i) Perry, R. J.; Wilson, B. D. J. Org.
Chem. 1996, 61, 7482; (j) Yuzuri, T.; Suezawa, H.;
Hirota, M. Bull. Chem. Soc. Jpn. 1994, 67, 1664; (k)
Marovec, F.; Peris, W.; Revel, L.; Giovanetti, R.;
Redaelli, D.; Rovati, L. C. J. Med. Chem. 1992, 35, 3633;
(l) Hishmat, O. H.; Magd El Din, A. A.; Ismail, N. A.
Org. Prep. Proc. Int. 1992, 24, 33; (m) Suezawa, H.;
Yuzuri, T.; Hirota, M.; Ito, Y.; Hamada, Y. Bull. Chem.
Soc. Jpn. 1990, 63, 328; (n) Yoshino, K.; Kohno, T.;
Uno, T.; Morita, T.; Tsukamoto, G. J. Med. Chem. 1986,
29, 820; (o) Petrenko, N. I.; Gerasimova, T. N.; Fokin, E.
P. Izv. Akad. Nauk SSSR, Ser. Khim. 1984, 1378; (p) Ito,
S.; Tanaka, Y.; Kakehi, A. Bull. Chem. Soc. Jpn. 1982,
55, 859; (q) Orlova, N. A.; Gerasimova, T. N.; Fokin, E.
P. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk
1980, 131; (r) Gerasimova, T. N.; Simikolenova, N. V.;
References
1. For a list of methods, see: Larock, R. C. Comprehensive
Organic Transformations: A Guide to Functional Group
Preparations; 2nd ed.; John Wiley & Sons: New York,
1999; pp. 1653–1661 and references cited therein.
2. Rhee, H.; Kim, J. Y. Tetrahedron Lett. 1998, 39, 1365.
3. Kim, J. Y.; Rhee, H. Bull Korean Chem. Soc. 2000, 21,
355.
4. (a) Enders, D.; Amaya, A. S.; Pierre, F. New J. Chem.
1999, 23, 261; (b) Nongkunsarn, P.; Ramsden, C. A.
Tetrahedron 1997, 53, 3805; (c) Nongkunsarn, P.; Rams-
den, C. A. Tetrahedron Lett. 1993, 34, 6773; (d) Larsen,
J.; Jorgensen, K. A.; Christensen, D. J. Chem. Soc.,
Perkin Trans. 1 1991, 1187; (e) Aitken, R. A.; Raut, S. V.
Synlett 1991, 189; (f) Chuang, T. H.; Yang, C. C.; Chang,
C. J.; Fang, J. M. Synlett 1990, 733; (g) De Kimpe, N.;
Verhe, R.; De Buyck, L.; Chys, J.; Schamp, N. Org. Prep.
Proced. Int. 1978, 10, 149; (h) Sandhu, J. S.; Mohan, S.;
Sethi, P. S. Chem. Ind. 1970, 1297.
5. (a) MacPherson, D. T.; Rami, H. K. In Comprehensive
Organic Functional Group Transformations; Katritzky, A.
R.; Otto, M.; Rees, C. W., Eds.; Elsevier: Amsterdam,
1995; Vol. 3, pp. 405–406 and references cited therein; (b)
Smith, M. B.; March, J. In March’s Advanced Organic
Chemistry: Reactions, Mechanisms, and Structure; 5th
ed.; John Wiley & Sons: New York, 2001; pp. 1185–1187
and references cited therein.