Molecules 2020, 25, 2355
9 of 10
6.
Majellaro, M.; Stefanachi, A.; Tardia, P.; Vicenti, C.; Boccarelli, A.; Pannunzio, A.; Campanella, F.; Coluccia, M.;
Denora, N.; Leonetti, F.; et al. Investigating Structural Requirements for the Antiproliferative Activity of
Biphenyl Nicotinamides. ChemMedChem 2017, 12, 1380–1389. [CrossRef]
7.
8.
Meti, G.Y.; Kamble, R.R.; Kamble, A.A.; Kumbar, M.N.; Joshi, S.D.; Dixit, S.R. Synthesis and Anti-Proliferative
Activity of Biphenyl Derved 5-Substituted-Indolin-2-Ones. Arch. Chem. Res. 2016, 1, 1.
Zhao, J.; Zhao, H.; Hall, J.A.; Brown, D.; Brandes, E.; Bazzill, J.; Grogan, P.T.; Subramanian, C.; Vielhauer, G.;
Cohen, M.S.; et al. Triazole containing novobiocin and biphenyl amides as Hsp90 C-terminal inhibitors. Med.
Chem. Commun. 2014, 5, 1317–1323. [CrossRef]
9.
Beltageri, R.; Zhang, Y.; Zindell, R.M.; Kuzmich, D.; Kirrane, T.M.; Bentzien, J.; Cardozo, M.; Capolino, A.J.;
Fadra, T.N.; Nelson, R.M.; et al. Trifluoromethyl group as a pharmacophore: Effect of replacing a CF3 group
on binding and agonist activity of a glucocorticoid receptor ligand. Bioorg. Med. Chem. Lett. 2005, 15,
10. Kumar, B.N.P.; Mohana, K.N.; Mallesha, L.; Veeresh, B. Synthesis and in vitro antiproliferative activity of
2,5-disubstituted-1,3,4-oxadiazoles containing trifluoromethyl benzenesulfonamide moiety. Med. Chem. Res.
11. Wojaczyn´ska, E.; Wojaczyn´ski, J.; Kleniewska, K.; Dorsz, M.; Olszewski, T.K. 2-Azanorbornane—A versatile
chiral aza-Diels–Alder cycloadduct: Preparation, applications in stereoselective synthesis and biological
12. Bailey, P.D.; Wilson, R.D.; Brown, G.R. Stereoselective synthesis of pipecolic acid derivatives using
aza-Diels-Alder reactions. Tetrahedron Lett. 1989, 30, 6781–6784. [CrossRef]
13. Stella, H.; Abraham, H.; Feneau-Dupont, J.; Tinant, B.; Declercq, J.P. Asymmetric aza-Diels-Alder reaction
using the chiral 1-phenyl ethyl imine of methyl glyoxylate. Tetrahedron Lett. 1990, 31, 2603–2606. [CrossRef]
14. Waldmann, H.; Braun, M. Asymmetric synthesis of bicyclic amino acid derivatives by aza-Diels-Alder
reactions in aqueous solution. Liebigs Ann. 1991, 1991, 1045–1048. [CrossRef]
15. Nakano, H.; Kumagai, N.; Kabuto, C.; Matsuzaki, H.; Hongo, H. Synthesis of new chiral catalysts,
N-alkyl-2-azanorbornyl-methanols, for the enantioselective addition of diethylzinc to arylaldehydes.
Tetrahedron Asymmetry 1995, 6, 1233–1236. [CrossRef]
16. Ekegren, J.K.; Modin, S.A.; Alonso, D.A.; Andersson, P.G. Multigram scale synthesis of a useful
aza-Diels–Alder adduct in a one-step procedure. Tetrahedron Asymmetry 2002, 13, 447–449. [CrossRef]
17. Hashimoto, N.; Yasuda, H.; Hayashi, M.; Tanabe, Y. Aza-Diels Alder Reaction of Methyl 2-[(R)-1-Phenylethyl]
−
iminoethanoate with Cyclopentadiene Using Practical and Environmentally Friendly Biphasic Solvent System.
Org. Process Res. Dev. 2005, 9, 105–109. [CrossRef]
18. Brandt, P.; Andersson, P.G. Exploring the Chemistry of 3-Substituted 2-Azanorbornyls in Asymmetric
Catalysis. Synlett 2000, 8, 1092–1106.
19. Wojaczyn´ska, E.; Turowska-Tyrk, I.; Skarz˙ewski, J. Novel chiral bridged azepanes: Stereoselective ring
expansion of 2-azanorbornan-3-yl methanols. Tetrahedron 2012, 68, 7848–7854. [CrossRef]
20. Wojaczyn´ska, E.; Skarz˙ewski, J. Chelating 2-azanorbornyl derivatives as effective nitrogen–nitrogen and
nitrogen–chalcogen donating ligands in palladium-catalyzed asymmetric allylic alkylation. Tetrahedron
Asymmetry 2008, 19, 2252–2257. [CrossRef]
21. Kamin´ska, K.; Wojaczyn´ska, E.; Wietrzyk, J.; Turlej, E.; Błaz˙ejczyk, A.; Wieczorek, R. Synthesis, structure and
antiproliferative activity of chiral polyamines based on a 2-azanorbornane skeleton. Tetrahedron Asymmetry
22. Wojaczyn´ska, E.; Skarz˙ewski, J.; Sidorowicz, Ł.; Wieczorek, R.; Wojaczyn´ski, J. Zinc complexes formed by
2,20-bipyridine and 1,10-phenanthroline moieties combined with 2-azanorbornane: Modular chiral catalysts
for aldol reactions. New J. Chem. 2016, 40, 9795–9805. [CrossRef]
23. CrysAlis PRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, UK, 2017.
24. Sheldrick, G.M. Crystal structure solution and refinement with SHELXT, SHELXL. Acta Cryst. 2016, C71, 3–8.
25. Sagmeister, S.; Eisenbauer, M.; Pirker, C.; Mohr, T.; Holzmann, K.; Zwickl, H.; Bichler, C.; Kandioler, D.;
Wrba, F.; Mikulits, W.; et al. New cellular tools reveal complex epithelial–mesenchymal interactions in
hepatocarcinogenesis. Br. J. Cancer 2008, 99, 151–159. [CrossRef] [PubMed]
26. Rohr-Udilova, N.V.; Stolze, K.; Sagmeister, S.; Nohl, H.; Schulte-Hermann, R.; Grasl-Kraupp, B. Lipid
hydroperoxides from processed dietary oils enhance growth of hepatocarcinoma cells. Mol. Nutr. Food Res.