Journal of the American Chemical Society
Communication
that the length of the nanofibers would affect the size of the
bacterial clusters and, subsequently, control bacteria prolifer-
ation. To confirm this hypothesis, we examined E. coli
proliferation in the presence of mannose-coated nanofibers of
different lengths. Spectrophotometric analysis based on
turbidity or optical density (OD) is widely used to estimate
the number of bacteria in liquid cultures.24,25 As the population
of bacterial cells grows, the intensity of transmitted light
decreases. As the first step in proliferation experiments, an
overnight culture of E. coli strain ORN 178 in Luria−Bertani
(LB) medium was diluted in phosphate-buffered saline (PBS)
until the OD at 600 nm (OD600) was 1.1−1.2. The E. coli
suspension was mixed with aliquots of 1, 2, and coassembled
samples in PBS. We measured the variation in the size of the E.
coli population by measuring OD600 every 30 min. As shown in
Figure 6b, a normal bacterial growth curve was observed only in
the presence of 2. In contrast, we did not observe an increase in
the cell population for 1 during our experimental time range.
For the coassembled amphiphiles, the slope of the cell growth
curve decreased with increasing 1 content. This result indicates
that the proliferation of bacterial cells is regulated by the length
of the carbohydrate-coated nanofibers, and this effect is
attributed to the different agglutination forces for 1, 2, and
the coassembled samples. This result indicates that the length
of the nanofibers plays a critical role in regulating the
proliferation of bacterial cells.
To determine whether this nanofiber is bacteriocidal or
bacteriostatic, we added α-methyl-D-mannopyranoside (Man)
as a specific competitor in high excess (1000-fold) to an
agglutinated solution containing amphiphile 1 that had been
incubated for 4 h. After the addition of excess Man, the
bacterial cells started to proliferate, demonstrating that the
agglutination was reversible (Figure 6c).
In summary, we were able to control the fiber length of
carbohydrate-coated nanofibers by the coassembly of carbohy-
drate-conjugated rod amphiphiles with different aromatic
segments. The major driving force controlling the length of
the fibers is the level of crystallinity of the fiber cores. The
resulting carbohydrate-coated nanofibers with controlled
lengths can systematically regulate biological functions, such
as the agglutination and proliferation of specific bacterial cells.
(MEST) (2012-0001240). We acknowledge a fellow of the
BK21 Program of the Ministry of Education and Human
Resource Development.
REFERENCES
■
(1) Muller, M. K.; Brunsveld, L. Angew. Chem., Int. Ed. 2009, 48,
̈
2921.
(2) Lim, Y.; Park, S.; Lee, E.; Ryu, J. H.; Yoon, Y. R.; Kim, T. H.; Lee,
M. Chem.Asian J. 2007, 2, 1363.
(3) Lim, Y.; Park, S.; Lee, E.; Jeong, H.; Ryu, J. H.; Lee, M. S.; Lee,
M. Biomacromolecules 2007, 8, 1404.
(4) Dolphin, G. T.; Dumy, P.; Garcia, J. Angew. Chem., Int. Ed. 2006,
45, 2699.
(5) Baldwin, A. J.; Bader, R.; Christodoulou, J.; MacPhee, C. E.;
Dobson, C. M.; Barker, P. D. J. Am. Chem. Soc. 2006, 128, 2162.
(6) Hentschel, J.; Krause, E.; Borner, H. G. J. Am. Chem. Soc. 2006,
̈
128, 7722.
(7) Wang, H.; Gu, L.; Lin, Y.; Lu, F.; Meziani, M. J.; Luo, P. G.;
Wang, W.; Cao, L.; Sun, Y. P. J. Am. Chem. Soc. 2006, 128, 13364.
(8) Luo, P. G.; Wang, H.; Gu, L.; Lu, F.; Lin, Y.; Christensen, K. A.;
Yang, S. T.; Sun, Y. P. ACS Nano 2009, 3, 3909.
(9) Gregorio, C. C.; Weber, A.; Bondad, M.; Pennise, C. R.; Fowler,
V. M. Nature 1995, 377, 83.
(10) Gestwicki, J. E.; Christopher, W.; Strong, L. E.; Oetjen, K. A.;
Kiessling, L. L. J. Am. Chem. Soc. 2002, 124, 14922.
(11) Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik,
M. A. Science 2007, 317, 644.
(12) Guer
Soc. 2008, 130, 14763.
́
in, G.; Wang, H.; Manners, I.; Winnik, M. A. J. Am. Chem.
(13) Gilroy, J. B.; Gadt, T.; Whittell, G. R.; Chabanne, L.; Mitchels, J.
̈
M.; Richardson, R. M.; Winnik, M. A.; Manners, I. Nat. Chem. 2010, 2,
566.
(14) Besenius, P.; Portale, G.; Bomans, P. H. H.; Janssen, H. M.;
Palmans, A. R. A; Meijer, E. W. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
17888.
(15) Bull, S. R.; Palmer, L. C.; Fry, N. J.; Greenfield, M. A.;
Messmore, B. W.; Meade, T. J.; Stupp, S. I. J. Am. Chem. Soc. 2008,
130, 2742.
(16) Moon, K.-S.; Kim, H.-J.; Lee, E.; Lee, M. Angew. Chem., Int. Ed.
2007, 46, 6807.
(17) Lee, E.; Kim, J.-K.; Lee, M. Angew. Chem., Int. Ed. 2008, 47,
6375.
(18) Huang, Z.; Lee, H.; Lee, E.; Kang, S.-K.; Nam, J.-M.; Lee, M.
Nat. Commun. 2011, 2, 459.
(19) Wolfenden, M. L.; Cloninger, M. J. J. Am. Chem. Soc. 2005, 127,
12168.
(20) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int.
Ed. 1998, 37, 2754.
(21) Ryu, J.-H.; Lee, E.; Lim, Y.-b.; Lee, M. J. Am. Chem. Soc. 2007,
129, 4808.
(22) Gestwicki, J. E.; Strong, L. E.; Cairo, C. W.; Boehm, F. J.;
Kiessling, L. L. Chem. Biol. 2002, 9, 163.
(23) Gu, L.; Elkin, T.; Jiang, X.; Li, H.; Lin, Y.; Qu, L.; Tzeng, T.-R.
J.; Joseph, R.; Sun, Y.-P. Chem. Commun. 2005, 874.
(24) Wang, B.; Liu, P.; Jiang, W.; Pan, H.; Xu, X.; Tang, R. Angew.
Chem., Int. Ed. 2008, 47, 3560.
ASSOCIATED CONTENT
* Supporting Information
■
S
Materials, methods, detailed experimental procedures (syn-
thesis and cellular assays), compound characterization, and
supporting figures. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
■
(25) Kim, J.; Ahn, Y.; Park, K. M.; Lee, D.-W.; Kim, K. Chem.Eur. J.
2010, 16, 12168.
Author Contributions
†D.-W.L. and T.K. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Y.-b. Lim (Yonsei Univ.) for supplying E. coli strains
ORN 178-GFP and ORN 208-RFP and for advice. We
gratefully acknowledge the National Research Foundation of
Korea (NRF) grant funded by the Korean Government
14725
dx.doi.org/10.1021/ja306802m | J. Am. Chem. Soc. 2012, 134, 14722−14725