TiO2 and TiO2 nanoparticles as efficient and recoverable catalysts
2405
1H NMR Spectra were recorded on a Bruker DRX-300 Avance spectrometer
300.13 MHz. The 13C NMR spectra were recorded at 75.47 MHz; for all NMR
spectra data, chemical shifts (d scale) are reported in parts per million (ppm). The
elemental analyses were performed with an Elementar Analysensysteme VarioEL.
The chemicals used in this work were purchased from Merck and Fluka Chemical.
TiO2 NPs were purchased from Aldrich with particle size \100 nm.
Typical procedure for preparation of 6-amino-3-methyl-1-phenylpyrano[2,3-
c]pyrazole-4,4,5(1H)-tricarbonitrile (3i)
To a magnetically stirred solution of tetracyanoethylene (0.13 g, 1.0 mmol) in H2O
(10 ml), TiO2 (0.02 g) and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (0.17 g, 1.0
mmol) was added at room temperature and the reaction mixture was stirred for 3 h.
After completion of the reaction, the solvent was removed under reduced pressure.
Then, CH2Cl2 was added to the residue and the solid catalyst was separated from the
reaction mixture by filtration. Then, crystallization from CH2Cl2/nhexane 1:2 afforded
3i as a white powder (0.21 g, yield 70 %); Mp 192–194 °C; IR: 3,421, 3,329, 2,210,
1,747, 1,656, 1,536, 1,413 cm-1; 1H NMR (300 MHz, CDCl3) d: 2.11 (s, 3H, CH3),
7.31–7.47 (m, 5H, Ar–H), 8.63 (br s, 2H, NH2). 13C NMR (75 MHz, CDCl3) d: 37.26,
56.7, 91.2, 111.4, 117.3, 121.6, 122.1, 126.7, 129.1, 140.1, 142.3, 148.3, 160.9; Anal.
calcd. for C16H10N6O: C 63.57, H 3.33, N 27.80; Found C16H10N6O: C 63.56, H 3.33,
N 27.83.
Acknowledgment We gratefully acknowledge financial support from the Research Council of the
Islamic Azad University of Miyandoab.
References
1. B.K. Min, C.M. Friend, Chem. Rev. 107, 2709 (2007)
2. G. Nagendrappa, Resonance 7, 59 (2002)
3. R.S. Varma, V.V. Namboodiri, Pure Appl. Chem. 73, 1309 (2001)
4. R.S. Varma, Green Chem. 1, 43 (1999)
5. P.A. Grieco, Organic Synthesis in Water (Blackie, New York, 1998)
6. D.J. Adams, P.J. Dyson, S.J. Tavener, Chemistry in Alternative Reaction Media (Wiley, New York,
2003)
7. H. Bosh, F. Janssen, Catal. Today 2, 369 (1988)
8. P. Forzatti, Catal. Today 62, 51 (2000)
9. M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)
10. A. Maldoti, A. Molinari, R. Amadeni, Chem. Rev. 102, 3811 (2002)
11. H. Itoh, S. Utamapanya, J.V. Stark, K.J. Klabunde, J.R. Schlup, Chem. Mater. 5, 71 (1993)
12. Y. Jiang, C. Decker, C. Mohs, K.J. Klabunde, J. Catal. 180, 24 (1998)
13. J. Guzman, B.C. Gates, Nano Lett. 1, 689 (2001)
14. B.M. Choudary, R.S. Mulukutla, K.J. Klabunde, J. Am. Chem. Soc. 125, 2020 (2003)
15. B.M. Choudary, M.L. Kantam, K.V.S. Ranganath, K. Mahender, B. Sreedhar, J. Am. Chem. Soc.
126, 3396 (2004)
16. R. Richards, W. Li, S. Decker, C. Davidson, O. Koper, V. Zaikovski, A. Volodin, T. Rieker, J. Am.
Chem. Soc. 122, 4921 (2000)
17. M.L. Kantam, S. Laha, J. Yadav, B. Sreedhar, Tetrahedron Lett. 47, 6213 (2006)
18. J.A. Ciller, N. Martin, C. Seoane, J.L. Soto, J. Chem. Soc. Perkin Trans. 1, 2581 (1985)
19. S. Hatakeyama, N. Ochi, H. Numata, S. Takano, J. Chem. Soc. Chem. Commun. 1202 (1988)
123