reactions have proven themselves to be highly selective and
atom economical.7,8 In this area, to date, most research has
focused on the catalytic conversion of CÀH bonds to CÀC
bonds. In contrast, the application of ruthenium catalysis
to the construction of carbonÀheteroatom bonds, espe-
cially for oxidative carbonÀnitrogen bond formation, has
been rarely reported.9 Thus far, major research efforts into
CÀN oxidative coupling have focused on using other
metals such as Pd, Cu, etc.5,6 In our ongoing studies into
the preparation of multisubstituted pyrazoles, we have
proposed that “a ruthenium catalyst, under proper condi-
tions, allows CÀH bond cleavage via an orthometalation
process that involves chelation with the nitrogen from
hydrazones”10 Consequently, the formation of a CÀN
bond is possible via reductive elimination to generate
the corresponding pyrazole products11 (Scheme 1). A
terminal oxidant could oxidize the Ru(0) species to
Ru(II) to complete the catalytic cycle. To the best
of our knowledge, intramolecular oxidative carbonÀ
nitrogen bond formation using ruthenium(II) has
not yet been achieved. In this paper, we report a new
example of ruthenium(II)-catalyzed oxidative CÀN
coupling with molecular oxygen as the oxidant for the
preparation of pyrazole derivatives.
used oxidants such as PhI(OAc)2,12 BQ,13 Cu(OAc)2,14
AgOAc,15 K2S2O8,16 TBHP, and Oxone, we are particu-
larly interestedhere in the applicability of dioxygen,17 since
it is an ideal oxidant and offers attractive industrial pros-
pects in terms of green and sustainable chemistry. Accord-
ingly, to test our hypothesis, a model study was initiated
with hydrazone 1 in the presence of [RuCl2(p-cymene)]2 in
DCE underoneatmosphereofO2. The results areshownin
Table 1. Encouragingly, a 10% yield of the desired product
2 was achieved (entry 1) after stirring for 6 h at 80 °C.
Encouraged by this preliminary result, we proceeded to
optimize the reaction conditions. After comprehensive
screening, we found DMSO to be highly efficient and
superior to other solvents, such as DCM, MeCN, THF,
DMF, DMA, EtOH, and 1,4-dioxane. It was observed
that higher temperatures could speed up the reactions
and improve the yields. There were only slight differences
in terms of reaction rates and conversion ratios when
higher catalyst loadings were used. Generally, a 0.05 equiv
amount of [RuCl2(p-cymene)]2 was sufficient to effec-
tively promote the reaction. Moreover, we found that
the yields notably increased with the addition of a base
such as NaHCO3. It was believed that the base would
serve as a proton shuttle and assist in the transforma-
tion. Attempts to use other ruthenium catalysts, such
as RuCl2(PPh)3, RuHCl(PPh)3, and Ru3(CO)12, were
not as successful as [RuCl2(p-cymene)]2. Interestingly, a
36% yield of product 2 was also achieved by using air as
the oxidant (entry 21). Typically, the reaction will proceed
to completion in DMSO within 8 h, in a clean manner,
under 1 atm of O2 at 100 °C.
Scheme 1. Preparation of Pyrazole through Ru(II)-Mediated
CÀH Activation
Table 1. Optimization of the Reaction Conditions
The oxidant plays an essential role in the catalytic
cycle of CÀH activation. While there are many commonly
(7) For reviews, see: (a) Ackermann, L. Chem. Rev. 2011, 111, 1315.
(b) Ackermann, L. Pure Appl. Chem. 2010, 82, 1403. (c) Ackermann, L.;
Vicente, R. Top. Curr. Chem. 2010, 292, 211.
entry
condition
1 atm O2, DCE, 80 °C, 6 h
yielda (%)
(8) For illustrative examples, see: (a) Lakshman, M. K.; Deb, A. C.;
Chamala, R. R.; Pradhan, P.; Pratap, R. Angew. Chem., Int. Ed. 2011, 50,
11400. (b) Seki, M.; Nagahama, M. J. Org. Chem. 2011, 76, 10198. (c)
Miura, H.; Wada, K.; Hosokawa, S.; Inoue, M. Chem.;Eur. J. 2010, 16,
4186. (d) Ackermann, L.; Born, R.; Vicente, R. ChemSusChem. 2009, 546.
(e) Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.;
Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156. (f) Oi, S.;
Sasamoto, H.; Funayama, R.; Inoue, Y. Chem. Lett. 2008, 37, 994. (g)
Ackermann, L.; Born, R.; Alvarez-Bercedo, P. Angew. Chem., Int. Ed. 2007,
46, 6364. (h) Ackermann, L. Org. Lett. 2005, 7, 3123. (i) Oi, S.; Aizawa, E.;
Ogino, Y.; Inoue, Y. J. Org. Chem. 2005, 70, 3113. (j) Ackermann, L.; Lygin,
A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379.
(9) (a) Leung, S. K. Y.; Tui, W. M.; Huang, J. S.; Che, C. M.; Liang,
J. L.; Zhu, N. J. Am. Chem. Soc. 2005, 127, 16629. (b) Liang, J. L.; Yuan,
S. X.; Huang, J. S.; Yu, W. Y.; Che, C. M. Angew. Chem., Int. Ed. 2002,
41, 3465. (c) Liang, J. L.; Huang, J. S.; Yu, X. Q.; Zhu, N.; Che, C. M.
Chem.;Eur. J. 2002, 8, 1563. (d) He, L.; Chan, P.; Tsui, W.; Yu, W.;
Che, C. Org. Lett. 2004, 6, 2405.
1
2
3
4
5
6
7
8
9
10
21
10
27
11
35
49
41
67
71
66
1 atm O2, 1,4-dioxane, 80 °C, 6 h
1 atm O2, MeCN, 80 °C, 6 h
1 atm O2, EtOH, 80 °C, 6 h
1 atm O2, t-AmOH, 80 °C, 6 h
1 atm O2, DMSO, 80 °C, 6 h
1 atm O2, DMF, 100 °C, 6 h
1 atm O2, DMA, 100 °C, 6 h
1 atm O2, DMSO, 100 °C, 6 h
10 1 atm O2, 2.0 equiv Et3N, DMSO, 100 °C, 6 h
11 1 atm O2, 2.0 equiv DIPEA, DMSO, 100 °C, 6 h
12 1 atm O2, 2.0 equiv Pyridine, DMSO, 100 °C, 6 h 47
13 1 atm O2, 2.0 equiv DBU, DMSO, 100 °C, 6 h
14 1 atm O2, 2.0 equiv DABCO, DMSO, 100 °C, 6 h
59
61
(10) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K
Org. Lett. 2007, 9, 2931.
15 1 atm O2, 2.0 equiv NaHCO3, DMSO, 100 °C, 6 h 72b
(11) Recent examples about synthesis of pyrazole: (a) Mohanan, K.;
Martin, A. R. Angew. Chem., Int. Ed. 2010, 49, 3196. (b) Neumann, J. J.;
Suri, M. Angew. Chem., Int. Ed. 2010, 49, 7790. (c) Lin, Q. Y.; Meloni, D.
Org. Lett. 2009, 11, 1999. (d) Gerstenberger, B. S.; Rauckhorst, M. R.
Org. Lett. 2009, 11, 2097. (e) Shan, G.; Liu, P. F.; Rao, Y. Org. Lett.
2011, 13, 1746. (f) Hu, J. T.; Cheng, Y. F.; Yang, Y. Q.; Rao, Y. Chem.
Commun. 2011, 47, 10133.
16 1 atm O2, 2.0 equiv Na2CO3, DMSO, 100 °C, 6 h
17 without Ru, 1 atm O2, DMSO, 100 °C, 24 h
18 1 atm air, 2.0 equiv NaHCO3, DMSO, 100 °C, 6 h 36
59
tracec
a Conversion ratio. b Isolated yield. c LCÀMS analysis.
Org. Lett., Vol. 14, No. 19, 2012
5031