Organometallics
Article
1
P+Ph2CH2PPh2), −25.6 (d, P+Ph2CH2PPh2). H NMR of isomer B
(CD2Cl2, 600 MHz): δ 4.48 (d, J = 14.3 Hz, CHP+Ph2CH2PPh2), 3.80
(s, CH2CHCP+Ph2CH2PPh2) 8.05 (d, CH2CHCP+PH2), 7.05−
8.11(m, aromatic). 31P NMR of isomer B (CD2Cl2): δ 14.4 (d,
P+PH2CH2PPh2), −25.5 (d, P+Ph2CH2PPh2).
REFERENCES
■
(1) (a) Ramirez, F.; Levy, S. J. Org. Chem. 1956, 21, 488. (b) Ramirez,
F.; Levy, S. J. Org. Chem. 1956, 21, 1333. (c) Ramirez, F.; Levy, S. J.
Am. Chem. Soc. 1957, 79, 67. (d) Ramirez, F.; Dershowitz, S. J. Org.
Chem. 1957, 22, 41. (e) Ramirez, F.; Levy, S. J. Am. Chem. Soc. 1957,
79, 6167. (f) Ramirez, F.; Levy, S. J. Org. Chem. 1958, 23, 2035.
(2) Brownie, J. H.; Baird, M. C.; Schmider, H. L. Organometallics
2007, 26, 1433.
(3) Brownie, J. H.; Baird, M. C.; Laws, D. R.; Geiger, W. E.
Organometallics 2007, 26, 5890.
(4) For a comprehensive review of phosphonium cyclopentadienides
and their coordination chemistry, see: (a) Brownie, J. H.; Baird, M. C.
Coord. Chem. Rev. 2008, 252, 1734. For more recent, related studies,
Synthesis of 1-C9H6PPh2MePPh2 (I). A mixture of 2.23 g of (1-
C9H7PPh2MePPh2)Br (4.46 mmol) and 0.12 g of NaH (5 mmol) in
40 mL of THF was stirred for 12 h, turning green and then brown.
The resulting mixture was filtered through Celite, and the solvent was
removed under reduced pressure to give a brown solid which was
redissolved in a minimum amount of CH2Cl2 and reprecipitated by
layering with hexanes (hexanes/CH2Cl2 4/1). The resulting
precipitate was filtered, washed with methanol, and dried to give
1.76 g (79% yield) of green, air-sensitive II. X-ray-quality crystals were
obtained by layering a saturated solution of II in CH2Cl2 with hexanes.
1H and 13C NMR data are given in Table 1. 31P NMR (CD2Cl2): δ
7.52 (d, JPP = 61 Hz, P+PH2CH2PPh2), −28.3 (d, P+Ph2CH2PPh2).
Synthesis of Isomers of [CpRu(1-C9H7PPh2MePPh2)]PF6. A
solution containing 0.01 g of [CpRu(MeCN)3]PF6 and 0.012 g of I in
see also (b) Serrano, E.; Navarro, R.; Soler, T.; Carbo,
Urriolabeitia, E. B. Inorg. Chem. 2009, 48, 6823. (c) Petrov, A. R.;
́ ́
J. J.; Lledos, A.;
Elfferding, M.; Mobus, J.; Harms, K.; Rufanov, K. A.; Sundermeyer, J.
̈
Eur. J. Inorg. Chem. 2010, 4157. (d) Xu, T.; Ye, J.; Gong, W.; Lin, Y.;
Ning, G. Acta Crystallogr., Sect. E: Struct. Rep. Online 2010, E66,
m1391. (e) Xu, T.; Gong, W.; Ye, J.; Lin, Y.; Ning, G. Organometallics
2010, 29, 6744. (f) Lichtenberg, C.; Hillesheim, N. S.; Elfferding, M.;
Oelkers, B.; Sundermeyer, J. Organometallics 2012, 31, 4259.
(5) Brownie, J. H.; Baird, M. C. J. Organomet. Chem. 2008, 693, 2812.
(6) (a) Crofts, P. C.; Williamson, M. P. J. Chem. Soc. 1967, 1094.
(b) Rufanov, K. A.; Ziemer, B.; Hummert, M.; Schutte, S. Eur. J. Inorg.
Chem. 2004, 4759.
0.6 mL of CD2Cl2 quickly turned red. Monitoring the H and 31P
1
NMR spectra over several days revealed two products, the apparent
kinetic product II and the thermodynamic product III. Initially the
ratio of II to III was very nearly 1:1 but, after 10 days, II was no longer
present and the amount of III had increased relative to the solvent
peak. H and 13C NMR data can be found in Table 1.
1
Computational Methods. Geometries of complexes II and III
and of simplified versions bearing H instead of Ph substituents at P
were optimized at the b3-lyp13/TZVP14 level using the Turbomole
program15 coupled to an external optimizer.16 For the chelate isomer,
several discrete local minima were located, differing in the indenyl
carbons bound to the Ru atom; only the lowest energy structure is
discussed in the text. Final geometries were checked by a vibrational
analysis (no imaginary frequencies), which was also used to calculate
thermal corrections (enthalpy and entropy). Single-point calculations
were then carried out with a larger basis set (TZVPP17) and inclusion
of an electronic correction for solvent effects using COSMO18 (ε =
9.1, CH2Cl2). These improved energies were combined with the above
thermal corrections (entropy scaled by 0.67 to account for reduced
freedom of motion in solution19) to obtain the final free energies
mentioned in the text.
(7) Fowler, K. G.; Littlefield, S. L.; Baird, M. C.; Budzelaar, P. H. M.
Organometallics 2011, 30, 6098.
(8) (a) Kuhl, O. Phosphorus-31 NMR Spectroscopy, A Concise
̈
Introduction for the Synthetic Organic and Organometallic Chemist;
Springer: Berlin, 2008. (b) Gorenstein, D. G. Phosphorus-31 NMR;
Academic Press: New York, 1984; Chapter 2. (c) Pregosin, P. S.;
Kunz, R. W. 31P and 13C NMR of Transition Metal Phosphine
Complexes; Springer-Verlag: New York, 1979. (d) Faller, J. W.; Friss,
T.; Parr, J. J. Organomet. Chem. 2010, 695, 2644. (e) Marchetti, F.;
Pettinari, C; Pizzabiocca, A.; Drozdov, A. A.; Troyanov, S. I.;
Zhuravlev, C. O.; Semenov, S. N.; Belousov, Y. A.; Timokhin, I. G.
Inorg. Chim. Acta 2010, 363, 4038.
(9) Trost, B. M.; Older, C. M. Organometallics 2002, 21, 2544.
(10) Garrou, P. E. Chem. Rev. 1981, 81, 229.
(11) (a) Basolo., F. Coord. Chem. Rev. 1982, 43, 7. (b) Rerek, M. E.;
Ji, L.-N.; Basolo, F J. Chem. Soc., Chem. Commun. 1983, 1208.
ASSOCIATED CONTENT
■
(c) Calhorda, M. J.; Romao, C. C.; Veiros, L. F. Chem. Eur. J. 2002, 8,
̃
S
* Supporting Information
4.
(12) Murphy, J. A.; Patterson, C. W. J. Chem. Soc., Perkin Trans. 1
1993, 405.
(13) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D.
J. Chem. Phys. 1993, 98, 1372. (c) Lee, C. T.; Yang, W. T.; Parr, R. G.
Phys. Rev. B 1988, 37, 785.
(14) Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100,
5829.
(15) (a) Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346.
Tables, figures, and CIF files giving crystallographic details for
1-C9H6PPh2CH2PPh2 (I) and (1-C9H7dppm)Br, including
figures showing complete numbering schemes, thermal ellipsoid
figures, and tables of positional and thermal parameters, bond
lengths, and bond angles, and energy calculations for
compounds II and IIIc,d (Table S1) and of the xyz coordinates
used in the theoretical calculations (Table S2). This material is
The crystallographic data for 1-C9H6PPh2CH2PPh2 (CCDC
892305) and (1-C9H7dppm)Br (CCDC 892303) may also be
obtained free of charge from The Cambridge Crystallographic
(b) Ahlrichs, R.; Bar, M.; Baron, H.-P.; Bauernschmitt, R.; Bocker, S.;
̈
̈
Ehrig, M.; Eichkorn, K.; Elliott, S.; Furche, F.; Haase, F.; Haser, M.;
̈
Hattig, C.; Horn, H.; Huber, C.; Huniar, U.; Kattannek, M.; Kohn, A.;
Kolmel, C.; Kollwitz, M.; May, K.; Ochsenfeld, C.; Ohm, H.; Schafer,
̈
̈
̈
̈
A.; Schneider, U.; Treutler, O.; Tsereteli, K.; Unterreiner, B.; Von
Arnim, M.; Weigend, F.; Weis, P.; Weiss, H.; Turbomole, version 5;
Theoretical Chemistry Group, University of Karlsruhe, Karlsruhe,
Germany, 2002.
(16) (a) Baker, J. J. Comput. Chem. 1986, 7, 385. (b) Baker, J. PQS,
version 2.4; Parallel Quantum Solutions, Fayetteville, AR, 2001.
(17) Weigend, F.; Furche, F.; Ahlrichs, R. J. Chem. Phys. 2003, 119,
12753.
(18) Klamt, A.; Schuurmann, G. J. Chem. Soc., Perkin Trans. 2 1993,
799.
(19) (a) Tobisch, S.; Ziegler, T. J. Am. Chem. Soc. 2004, 126, 9059.
(b) Raucoules, R.; de Bruin, T.; Raybaud, P.; Adamo, C. Organo-
metallics 2009, 28, 5358.
AUTHOR INFORMATION
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Natural Sciences and Engineering Research
Council for financial support (Discovery Grants to M.C.B. and
P.H.M.B.), the Higher Education Commission of Pakistan for a
Fellowship to R.H., and Johnson-Matthey for a generous loan
of RuCl3·3H2O.
6932
dx.doi.org/10.1021/om300715a | Organometallics 2012, 31, 6926−6932