ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
A Fragment-Based Approach toward
Substituted Trioxa[7]helicenes
†
Hans Kelgtermans, Liliana Dobrzanska, Luc Van Meervelt, and Wim Dehaen*
†
‡
,†
ꢀ
Molecular Design and Synthesis, Department of Chemistry, Katholieke Universiteit
Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium, and Biomolecular Architecture,
Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F,
3001 Leuven, Belgium
Received August 20, 2012
ABSTRACT
A series of novel substituted trioxa[7]helicenes have been successfully prepared by a one-pot palladium catalyzed CꢀH arylation reaction starting
from readily prepared dibenzofuran fragments. The dinitro-substituted helicene was analyzed by X-ray crystallography revealing the occurrence
of two distinct enantiomers in the asymmetric unit, which forms interesting supramolecular motifs in the crystal, based on weak H-bonding
interactions.
For over a century now, chemists have been inspired
by the peculiar shape of helicenes.1 Formed by a sequential
ortho-annulation of (hetero)aromatic rings, helicenes are
endowed with a unique π-conjugated backbone which
is twisted into a helical shape due to a progressive
steric hindrance between the terminal rings. The resulting
inherently chiral skeleton is responsible for an astonishing
number of diverse and fascinating applications, covering
domains such as chiral catalysis,2 self-assembly,3 liquid
crystals,4 and biomolecular recognition.5 Not surprisingly,
these recent developments have led to a rapid increase in
the number of different synthetic methodologies that avoid
the more common, and up until now widely used, oxidative
photocyclizations of stilbene-like precursors.6 Compelling
examples of these novel synthetic routes include the well-
known DielsꢀAlder approach introduced by Katz et al.,7
carbenoid couplings,8 FriedelꢀCrafts type cyclizations,9
† Molecular Design and Synthesis.
‡ Biomolecular Architecture.
(1) (a) Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463. (b)
Dumitrascu, F.; Dumitrescu, D. G.; Aron, I. ARKIVOC 2012, 1. (c)
Urbano, A. Angew. Chem., Int. Ed. 2003, 42, 3986.
(2) (a) Crittall, M. R.; Rzepa, H. S.; Carbery, D. R. Org. Lett. 2011,
13, 1250. (b) Monteforte, M.; Cauteruccio, S.; Maiorana, S.; Benincori,
T.; Forni, A.; Raimondi, L.; Graiff, C.; Tiripicchio, A.; Stephenson,
G. R.; Licandro, E. Eur. J. Org. Chem. 2011, 28, 5649. (c) Takenaka, N.;
Chen, J.; Captain, B.; Sarangthem, R. S.; Chandrakumar, A. J. Am.
Chem. Soc. 2010, 132, 4536.
(5) Shinohara, K.-I.; Sannohe, Y.; Kaieda, S.; Tanaka, K.-I.; Osuga,
H.; Tahara, H.; Xu, Y.; Kawase, T.; Bando, T.; Sugiyama, H. J. Am.
Chem. Soc. 2010, 132, 3778.
(6) (a) Waghray, D.; Nulens, W.; Dehaen, W. Org. Lett. 2011, 13,
5516. (b) Pearson, M. S. M.; Carbery, D. R. J. Org. Chem. 2009, 74,
5320. (c) Aloui, F.; Abed, E. R.; Marinetti, A.; Hassine, B. B. Tetra-
hedron Lett. 2008, 49, 4092. (d) Groen, M. B.; Schadenberg, H.;
Wynberg, H. J. Org. Chem. 1971, 36, 2797.
(7) Katz, T. J.; Liu, L.; Willmore, N.; Fox, J. M.; Rheingold, A.; Shi,
S.; Nuckolls, C.; Rickman, B. J. Am. Chem. Soc. 1997, 119, 10054.
(8) (a) Gingras, M.; Dubois, F. Tetrahedron Lett. 1999, 40, 1309. (b)
Dubois, F.; Gingras, M. Tetrahedron Lett. 1998, 39, 5039.
(9) Fuchibe, K.; Jyono, H.; Fujiwara, M.; Kudo, T.; Yokota, M.;
Ichikawa, J. Chem.;Eur. J. 2011, 17, 12175.
(3) (a) Nakano, K.; Oyama, H.; Nishimura, Y.; Nakasako, S.;
Nozaki, K. Angew. Chem., Int. Ed. 2012, 51, 695. (b) Kaseyama, T.;
Furumi, S.; Zhang, X.; Tanaka, K.; Takeuchi, M. Angew. Chem., Int.
ꢀ
ꢁ
Ed. 2011, 50, 3684. (c) Rybacek, J.; Huerta-Angeles, G.; Kollarovic, A.;
ꢀ
ꢀ
Stara, I.; Stary, I.; Rahe, P.; Nimmrich, M.; Kuehnle, A. Eur. J. Org.
Chem. 2011, 853.
(4) (a) Ferrarini, A.; Pieraccini, S.; Masiero, S.; Spada, G. P. Beilstein
J. Org. Chem. 2009, 5, No. 50 (doi: 10.3762/bjoc.5.50). (b) Nuckolls, C.;
Shao, R.; Jang, W.; Clark, N.; Walba, D.; Katz, T. J. Chem. Mater. 2002,
14, 773.
r
10.1021/ol3023209
XXXX American Chemical Society