ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Asymmetric Synthesis of the Fully
Elaborated Pyrrolidinone Core of
Oxazolomycin A
Timothy J. Donohoe,*,† Timothy J. C. O’Riordan,†,§ Manuel Peifer,†
Christopher R. Jones,† and Timothy J. Miles‡
Chemistry Research Laboratory, Department of Chemistry, University of Oxford,
Mansfield Road, Oxford, OX1 3TA, U.K., and Medicines Research Centre,
GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K.
Received September 14, 2012
ABSTRACT
The asymmetric synthesis of the key pyrrolidinone core, including a highly elaborated exocyclic carbon chain, of the γ-lactam β-lactone antibiotic
oxazolomycin A is described. Principal features include the Birch reduction of an aromatic pyrrole nucleus, a late stage RuO4 catalyzed pyrrolidine
oxidation, and a highly diastereoselective organocerium addition to an aldehyde.
First isolated in 1985 by Uemura et al.1 from Strepto-
myces species, oxazolomycin A 1 is the parent compound
of a class of spiro γ-lactam β-lactone ring containing
antibiotics2 that have been shown to exhibit wide ranging
antibacterial and antiviral activities.3 Due to its structural
complexity and potent biological activity, oxazolomycin A
has attracted considerable attention from the chemistry
community. Syntheses of the diene and triene fragments, in
addition to a large number of studies focusing on models
of the pyrrolidinone core, void of the exocyclic carbon
chain, have been described.4 The sole total synthesis of
oxazolomycin A was reported in 2011 by Hatakeyama et
al. in 34 linear steps, utilizing a Conia-ene type cyclization
to construct the central γ-lactam ring.5 Elsewhere, the
groups of Kende in 1990 and Hatakeyama in 2007 have
(4) (a) Andrews, M. D.; Brewster, A. G.; Moloney, M. G. Synlett
1996, 612. (b) Henaff, N.; Whiting, A. Org. Lett. 1999, 1, 1137. (c)
Papillon, J. P. N.; Taylor, R. J. K. Org. Lett. 2000, 2, 1987. (d) Wang, Z.;
Moloney, M. G. Tetrahedron Lett. 2002, 43, 9629. (e) Bulger, P. G.;
Moloney, M. G.; Trippier, P. C. Org. Biomol. Chem. 2003, 1, 3726. (f)
Moloney, M. G.; Yaqoob, M. Synlett 2004, 1631. (g) Mohaptra, D. K.;
Mondal, D.; Gonnade, R. G.; Chorghade, M. S.; Gurjar, M. K. Tetra-
hedron Lett. 2006, 47, 6031. (h) Bennett, N. J.; Prodger, J. C.; Pattenden,
G. Tetrahedron 2007, 63, 6216. (i) Yamada, T.; Sakaguchi, K.; Shinada,
T.; Ohfune, Y.; Soloshonok, V. A. Tetrahedron: Asymmetry 2008, 19,
2789. (j) Webb, M. R.; Addie, M. S.; Crawforth, C. M.; Dale, J. W.;
Franci, X.; Pizzonero, M.; Donald, C.; Taylor, R. J. K. Tetrahedron
2008, 64, 4778. (k) Mondal, D.; Bera, S. Synthesis 2010, 3301. (l) Bastin,
R.; Dale, J. W.; Edwards, M. G.; Papillon, J. P. N.; Webb, M. R.; Taylor,
R. J. K. Tetrahedron 2011, 67, 10026.
(5) Eto, K.; Yoshino, M.; Takahashi, K.; Ishihara, J.; Hatakeyama,
S. Org. Lett. 2011, 13, 5398.
(6) (a) Kende, A. S.; Kawamura, K.; DeVita, R. J. J. Am. Chem.
Soc. 1990, 112, 4070. (b) Onyango, E. O.; Tsurumoto, J.; Imai, N.;
Takahashi, K.; Ishihara, J.; Hatakeyama, S. Angew. Chem., Int. Ed.
2007, 46, 6703.
† University of Oxford.
‡ GlaxoSmithKline.
§ Author to whom correspondence regarding X-ray crystallography should
be addressed.
(1) Mori, T.; Takahashi, K.; Kashiwabara, M.; Uemura, D.;
Katayama, C.; Iwadare, S.; Shizuri, Y.; Mitomo, R.; Nakano, F.;
Matsuzaki, A. Tetrahedron Lett. 1985, 26, 1073.
(2) Moloney, M. G.; Trippier, P. C.; Yaqoob, M.; Wang, Z. Curr.
Drug Discovery Technol. 2004, 1, 181.
(3) (a) Kawai, S.; Kawabata, G.; Kobayashi, A.; Kawazu, K. Agric.
€
Biol. Chem. 1989, 53, 1127. (b) Tonew, E.; Tonew, M.; Grafe, U.; Zoepel,
P. Acta Virol. 1992, 36, 166.
r
10.1021/ol302541j
XXXX American Chemical Society