ChemComm
Communication
9 A chiral iron salen-type complex for hydrophosphorylation is
known: (a) P. Muthupandi and G. Sekar, Org. Biomol. Chem., 2012,
10, 5347–5352. Fe-catalyzed dihydrophosphination of alkynes:
(b) M. Kamitani, M. Itazaki, C. Tamiya and H. Nakazawa, J. Am.
Chem. Soc., 2012, 134, 11932–11935.
10 (a) L.-Z. Li, G.-L. Song and G.-Y. Tang, Z. Kristallogr. – New Cryst.
Struct., 2012, 227, 544; (b) S. Koner, S. Iijima, M. Watanabe and
M. Sato, J. Coord. Chem., 2003, 56, 103; (c) J. E. Davies and
B. M. Gatehouse, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst.
Chem., 1973, 29, 1934; (d) P. Coggon, A. T. McPhail, F. E. Mabbs and
V. N. McLachlan, J. Chem. Soc. A, 1971, 1014; (e) L. O. Atovmyan,
O. A. D’yachenko and S. V. Soboleva, Zh. Strukt. Khim., 1970, 11, 557;
( f ) F. Calderazzo, C. Floriani, R. Henzi and F. L’Eplattenier, J. Chem.
Soc. A, 1969, 1378–1386; (g) M. Gerloch, E. D. McKenzie and
A. D. C. Towl, J. Chem. Soc. A, 1969, 2850–2858.
11 Use of 2a in catalysis: (a) G. Hilt, C. Walter and P. Bolze, Adv. Synth.
Catal., 2006, 348, 1241–1247; (b) S. K. Edulji and S. T. Nguyen,
Organometallics, 2003, 22, 3374–3381.
12 The structure of 2b is reported in clusters or co-crystallized with
copper complexes: (a) P. Roy, K. Dhara, J. Chakraborty, M. Nethaji
and P. Banerjee, Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys.,
Theor. Anal. Chem., 2007, 46, 1947; (b) N. Re, R. Crescenzi,
C. Floriani, H. Miyasaka and N. Matsumoto, Inorg. Chem., 1998,
37, 2717–2722. Synthesis of 2b: ref. 10f.
13 (a) A. Jozwiuk, A. L. Ingram, D. Powell, K. S. Murray, B. Moubaraki,
N. F. Chilton and R. P. Houser, Dalton Trans., 2014, 43, 9740–9753;
(b) C. Floriani and G. Fachinetti, J. Chem. Soc., Chem. Commun.,
1973, 17–18; ref. 10f, 11b.
14 M. F. Cain, R. P. Hughes, D. S. Glueck, J. A. Golen, C. E. Moore and
A. L. Rheingold, Inorg. Chem., 2010, 49, 7650–7662.
15 (a) G. Borah, D. Boruah, G. Sarmah, S. K. Bharadwaj and U. Bora,
Appl. Organomet. Chem., 2013, 27, 688–694; (b) P. A. Aguirre,
C. A. Lagos, S. A. Moya, C. Zuniga, C. Vera-Oyarce, E. Sola, G. Peris
and J. C. Bayon, Dalton Trans., 2007, 5419–5426; (c) P. Giannoccaro,
D. Cornacchia, S. Doronzo, E. Mesto, E. Quaranta and M. Aresta,
Organometallics, 2006, 25, 2872–2879.
catalytically active at such low loadings. The turnover frequency for
the formation of 3a over the initial 30 minutes is 80 hꢀ1, slowing to
33 hꢀ1 after 3 hours (at which point the reaction is 44% complete).
The upper turnover number limit is 200 for this reaction (assuming
2a acts as a dimer in the catalytic cycle). A Hammett plot of HP with
2a shows that there is a change in rate limiting step (see ESI†) and
further investigation shows that the order in 2a is 1.6, suggesting a
far more complicated catalytic cycle than originally anticipated
and, at these early stages of our mechanistic studies, we cannot
fully rule out a Michael addition or a 1,2-insertion process.4c
Therefore, a full mechanistic investigation is underway and will
be reported in due course.
In summary, we have developed a simple, air stable iron pre-
catalyst for the hydrophosphination of activated alkenes.
The reaction proceeds with low catalyst loading and at room
temperature. We have also shown that the reaction is unlikely to be
radical mediated. Full mechanistic studies will be reported shortly
and are being used to inform the design of pro-ligands and thus
iron pre-catalysts which will utilize unactivated starting materials
(unactivated alkenes, alkyl phosphines, internal alkenes). In addi-
tion, the obtained phosphine products have shown early promise as
pro-ligands for the Fe-mediated Negishi cross-coupling of benzyl
bromides and diaryl zinc reagents, demonstrating for the first time
the synthetic application of mono-phosphines obtained from HP.
We would like to thank Dr M. F. Mahon for assistance with
X-ray crystallography (characterisation of 2a) and the EPSRC NMSF
at the University of Swansea for mass spectrometry analyses. We
would like to thank the University of Bath for a Prize Fellowship
(RLW) and a DTA studentship (KJG).
16 H.-H. Chou and R. T. Raines, J. Am. Chem. Soc., 2013, 135, 14936–14939.
17 (a) B. D. Sherry and A. Fu¨rstner, Acc. Chem. Res., 2008, 41, 1500–1511;
(b) C. J. Adams, R. B. Bedford, E. Carter, N. J. Gower, M. F. Haddow,
´
J. N. Harvey, M. Huwe, M. A. Cartes, S. M. Mansell, C. Mendoza,
D. M. Murphy, E. C. Neeve and J. Nunn, J. Am. Chem. Soc., 2012, 134,
10333–10336; (c) X. Qian, L. N. Dawe and C. M. Kozak, Dalton Trans.,
2011, 40, 933–943; (d) R. B. Bedford, M. Huwe and M. C. Wilkinson,
Chem. Commun., 2009, 600–602. Simple phosphines are known for
this transformation: (e) R. B. Bedford, E. Carter, P. M. Cogswell,
N. J. Gower, M. F. Haddow, J. N. Harvey, D. M. Murphy, E. C. Neeve
and J. Nunn, Angew. Chem. Int. Ed., 2013, 52, 1285–1288.
Notes and references
1 A. Behr, Applied homogeneous catalysis, Wiley-VCH, Weinheim, 2012.
2 T. Reetz, Organocatalysis, Springer-Verlag, Berlin, 2008.
3 J.-P. Majoral, New Aspects in Phosphorus Chemistry V, Springer,
Berlin, 2005.
4 For a state-of-the-art overview of hydrophosphination: (a) V. Koshti,
S. Gaikwad and S. H. Chikkali, Coord. Chem. Rev., 2014, 265, 52–73; 18 Reaction conditions: PhMgBr (670 mL, 2 mmol, 3 M solution in Et2O)
(b) V. P. Ananikov and M. Tanaka, Topics in Organometallic Chemistry:
Hydrofunctionalization, Springer, Heidelberg, 2013; (c) L. Rosenberg,
ACS Catal., 2013, 3, 2845–2855.
5 On the importance of the P–C bond forming process to the chemical
community: J. A. Gladysz, R. B. Bedford, M. Fujita, F. P. Gabba,
K. I. Goldberg, P. L. Holland, J. L. Kiplinger, M. J. Krische, J. Louie,
C. C. Lu, J. R. Norton, M. A. Petrukhina, T. Ren, S. S. Stahl,
T. D. Tilley, C. E. Webster, M. C. White and G. T. Whiteker,
Organometallics, 2014, 33, 1505–1527.
added to a solution of ZnCl2 (136 mg, 1 mmol) in THF (0.5 mL) and
stirred under N2 for 30 min. Toluene (4 mL) was added, followed by
the appropriate benzyl bromide (1 mmol). The mixture was trans-
ferred by cannula to a stirred solution of FeCl2 (6 mg, 5 mol%) and
3a (87 mg, 0.3 mmol) in toluene (1 mL), washing the ZnPh2 solution
through with toluene (2 mL). The reaction was stirred at 45 1C for
14 h, quenched with H2O, extracted into EtOAc and analyzed by
1H NMR spectroscopy using 1,3,5-trimethoxybenzene as a standard.
The reaction has not been fully optimized: reduced yields are due to
homocoupling and/or unreacted benzylic starting material.
6 Catalyst-free HP: (a) F. Alonso, Y. Moglie, G. Radivoy and M. Yus, Green
Chem., 2012, 14, 2699–2702. Base catalyzed HP: (b) T. Bunlaksananusorn 19 Bedford et al. (ref. 17d) discuss the importance of three equivalents of
and P. Knochel, Tetrahedron Lett., 2002, 43, 5817–5819.
7 Selected intermolecular examples with Ni: (a) S. Ortial, H. C. Fisher and
diphosphine relative to the Fe-center when using in situ catalyst prepara-
tion, therefore 6 eq. mono-phosphine (0.3 mmol) was used in this report.
J.-L. Montchamp, J. Org. Chem., 2013, 78, 6599–6608; (b) A. D. Sadow, 20 In situ reduction of Group 8 metal porphyrins to form the active M(II)
I. Haller, L. Fadini and A. Togni, J. Am. Chem. Soc., 2004, 126,
14704–14705. Selected examples with Cu:; (c) N. A. Isley,
R. T. H. Linstadt, E. D. Slack and B. H. Lipshutz, Dalton Trans., 2014,
´
pre-catalyst: J. R. Wolf, C. G. Hamaker, J. P. Djukic, T. Kodadek and
L. K. Woo, J. Am. Chem. Soc., 1995, 117, 9194–9199; D. A. Smith,
D. N. Reynolds and L. K. Woo, J. Am. Chem. Soc., 1993, 115, 2511–2513.
43, 13196–13200; (d) A. Leyva-Perez, J. A. Vidal-Moya, J. R. Cabrero- 21 NaOtBu is reported to promote radical mediated transformations:
Antonino, S. S. Al-Deyab, S. I. Al-Resayes and A. Corma, J. Organomet.
Chem., 2011, 696, 362.
8 L. Routaboul, F. Toulgoat, J. Gatignol, J.-F. Lohier, B. Norah,
O. Delacroix, C. Alayrac, M. Taillefer and A.-C. Gaumont, Chem. –
Eur. J., 2013, 19, 8760–8764.
(a) E. Shirakawa, K.-I. Itoh, T. Higashino and T. Hayashi, J. Am. Chem.
Soc., 2010, 132, 15537–15539. Addition of 1 eq. cumene to the catalytic
reaction of 2b (1 mol%) with styrene (1.82 eq.), HPPh2 (0.57 mmol, 1 eq.)
and NaOtBu (1 eq.) give a spectroscopic yield of 87% 3a. Use of NEt3
(20 mol%) in the standard transformation with 2b gives 32% 3a.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 12109--12111 | 12111