Notes and references
1 L. M. Hall, M. Gerowska and T. Brown, Nucleic Acids Res., 2012,
40, e108.
2 N. M. Thomsen, V. Vongsutilers and P. M. Gannett, Crit. Rev.
Eukaryotic Gene Expression, 2011, 21, 155–176.
3 F. Jordan and H. Niv, Biochim. Biophys. Acta, 1977, 476, 265–271.
4 A. St Clair, G. Xiang and L. W. McLaughlin, Nucleosides Nucleotides,
1998, 17, 925–937.
5 W. A. Cristofoli, L. I. Wiebe, E. De Clercq, G. Andrei, R. Snoeck,
J. Balzarini and E. E. Knaus, J. Med. Chem., 2007, 50, 2851–2857.
6 D. J. Hurley, S. E. Seaman, J. C. Mazura and Y. Tor, Org. Lett.,
2002, 4, 2305–2308.
7 C. Hobartner, H. Mittendorfer, K. Breuker and R. Micura,
¨
Angew. Chem., 2004, 43, 3922–3925.
8 C. Kreutz, H. Kahlig, R. Konrat and R. Micura, J. Am. Chem.
Soc., 2005, 127, 11558–11559.
9 W. J. Burrows, D. J. Armstrong, F. Skoog, S. M. Hecht,
J. T. Boyle, N. J. Leonard and J. Occolowitz, Science, 1968, 161,
691–693.
10 S. M. Hecht, N. J. Leonard, W. J. Burrows, D. J. Armstrong,
F. Skoog and J. Occolowitz, Science, 1969, 166, 1272–1274.
11 D. M. Reddy, P. F. Crain, C. G. Edmonds, R. Gupta,
T. Hashizume, K. O. Stetter, F. Widdel and J. A. McCloskey,
Nucleic Acids Res., 1992, 20, 5607–5615.
12 A. Y. Kobitski, M. Hengesbach, S. Seidu-Larry, K. Dammertz,
C. S. Chow, A. van Aerschot, G. U. Nienhaus and M. Helm,
Chem. Biol., 2011, 18, 928–936.
Fig. 3 Comparison of the concentration dependent knockdown effi-
ciencies of various constructs on the eGFP signal: (a) ( ) unlabeled,
(
) only 30-labeled and ( ) double labeled, with different acceptor
dyes on the 50-end; (b) ( ) only 50-labeled via phosphate linkage,
) double labeled via phosphate linkages, ( ) double labeled, with
(
13 P. S. Pallan, C. Kreutz, S. Bosio, R. Micura and M. Egli, RNA,
2008, 14, 2125–2135.
14 J. P. Rife, C. S. Cheng, P. B. Moore and S. A. Strobel, Nucleic
Acids Res., 1998, 26, 3640–3644.
15 T. N. Campbell and F. Y. Choy, Genet. Mol. Res., 2004, 3, 282–287.
the 50-label on the guanosine sugar edge and ( ) only 50-labeled via
the guanosine sugar edge.
of 5 compared to the phosphate labeled with the same dye.
Thus, avoiding the 5’OH of the ribose for labeling is not
necessarily advantageous. Both the structure of the dye as well
as the attachment site have an effect on RNAi activity, with
the latter effect more pronounced.
¨
16 A. Jarve, J. Muller, I. H. Kim, K. Rohr, C. MacLean, G. Fricker,
U. Massing, F. Eberle, A. Dalpke, R. Fischer, M. F. Trendelenburg
and M. Helm, Nucleic Acids Res., 2007, 35, e124.
17 P. Y. Chen, L. Weinmann, D. Gaidatzis, Y. Pei, M. Zavolan,
T. Tuschl and G. Meister, RNA, 2008, 14, 263–274.
18 D. S. Schwarz, G. Hutvagner, B. Haley and P. D. Zamore,
Mol. Cell, 2002, 10, 537–548.
In summary, we have explored the sugar edge of the guanine
nucleobase for derivatization by synthesizing CTDNPI, a
phosphoramidite, which, after incorporation into RNA via
solid phase synthesis, offers an alkynyl moiety for functiona-
lization via CuAAC. This functionalization is, however, other-
wise inert. The building block was used in structure–function
studies, probing a new labeling site at the 50-end of the
antisense strand in siRNA, offering a new technique for dual
labeling in FRET-based experiments. Our quantitative assess-
ment of the effect of 50-labeling on RNAi activity shows that
all used 50-labeled siRNAs are still highly potent despite the
labels. Our new phosphoramidite has allowed us to determine
that the mild increase in IC50 caused by 50-labeling of the
siRNA antisense strand does not depend on the attachment
site, but rather is caused by the presence of the dye in the
approximate vicinity of the 50-nucleotide. Since larger dyes
impede RNAi activity more strongly, the effects are likely the
result of a steric clash of the dye with protein factors of the
RNAi pathway.
19 J. F. Gerster and R. K. Robins, J. Am. Chem. Soc., 1965, 87,
3752–3759.
20 R. Micura, C. Hobartner, R. Rieder, C. Kreutz, B. Puffer, K. Lang
and H. Moroder, Current protocols in nucleic acid chemistry,
ed. S. L. Beaucage, et al., 2007, ch. 1, Unit 1 15.
21 A. H. El-Sagheer and T. Brown, Chem. Soc. Rev., 2010, 39,
1388–1405.
22 K. Fauster, M. Hartl, T. Santner, M. Aigner, C. Kreutz, K. Bister,
E. Ennifar and R. Micura, ACS Chem. Biol., 2012, 7, 581–589.
23 C. Y. Jao and A. Salic, Proc. Natl. Acad. Sci. U. S. A., 2008, 105,
15779–15784.
24 F. Seela, V. R. Sirivolu and P. Chittepu, Bioconjugate Chem., 2008,
19, 211–224.
25 T. S. Seo, Z. Li, H. Ruparel and J. Ju, J. Org. Chem., 2003, 68,
609–612.
26 Q. Shen, S. Tang, W. Li, Z. Nie, Z. Liu, Y. Huang and S. Yao,
Chem. Commun., 2012, 48, 281–283.
27 P. M. Gramlich, S. Warncke, J. Gierlich and T. Carell, Angew.
Chem., 2008, 47, 3442–3444.
28 J. F. Gerster and R. K. Robins, J. Org. Chem., 1966, 31,
3258–3262.
29 M. Hirsch, D. Strand and M. Helm, Biol. Chem., 2012, 393, 23–35.
30 Y. Dorsett and T. Tuschl, Nat. Rev. Drug Discovery, 2004, 3, 318–329.
31 J. Harborth, S. M. Elbashir, K. Vandenburgh, H. Manninga,
S. A. Scaringe, K. Weber and T. Tuschl, Antisense Nucleic Acid
Drug Dev., 2003, 13, 83–105.
Support by Dr Malte Paulsen and Dr Andreas Vonderheit
of the IMB Core Facilities Cytometry and Microscopy,
respectively, is gratefully acknowledged. The authors also wish
32 Y. L. Chiu and T. M. Rana, Mol. Cell, 2002, 10, 549–561.
33 J. Martinez, A. Patkaniowska, H. Urlaub, R. Luhrmann and
T. Tuschl, Cell, 2002, 110, 563–574.
to acknowledge Professor Andres Jaschke and Mr Heiko Rudi
¨
at the IPMB (University of Heidelberg) for the MALDI-TOF
measurements.
34 A. Nykanen, B. Haley and P. D. Zamore, Cell, 2001, 107, 309–321.
¨
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.