Glycoconj J (2012) 29:453–456
455
Fig. 1 Phenols in the coupling
reaction
Table 3 Substrate scope for TMSOTf-catalyzed glycosylationa
glycosides were not observed in the reaction. Compared to
glycosylation of 2-deoxyglucosyl acetate 1, the glycosylation of
2-deoxygalactosyl acetate 4 with acceptors (2a-h) proceeded
smoothly, providing the expected corresponding α-O-aryl gal-
actosides 5a-h in good yields under the catalysis of TMSOTf
(0.3 equiv) in CH2Cl2 at 0 °C. Notably, the efficiency of this
methodology is demonstrated by the coupling of 2-deoxy ga-
lactose acetate donor with the relatively hindered 2-
methylphenol (2f) to form α-O-aryl galactoside 5f in 81 % yield
(entry 14), though the reaction is a little slower compared to the
corresponding glucosides counterpart (compared to entry 10)2.
Entry
R1
R2
R
Product
Yield(%)b
1
H
OAc
OAc
OAc
OAc
OAc
OAc
OAc
OAc
H
H
3a
3b
3c
3d
3e
3f
89
85
88
85
90
82
79
95
81
75
85
84
72
81
80
88
2
H
p-CH3
p-OCH3
tyrosinec
p-NO2
o-CH3
3,5-di-F
phenyld
H
3
H
4
H
5
H
6
H
7
H
3g
3h
5a
5b
5c
5d
5e
5f
1
2 Selected spectral data for new compounds: Compound 3d: H NMR
8
H
(500 MHz, CDCl3) δ 1.98 (1 H, dd, J03.2, 12.2 Hz), 2.02 (3 H, s), 2.04
(3 H, s), 2.05 (3 H, s), 2.45 (1 H, td, J05.2, 13.0 Hz), 3.06 (2 H, dd, J05.5,
13.0 Hz), 3.73 (3 H, s), 3.96 (1 H, d, J012.5 Hz), 4.03 (1 H, d, J08.6 Hz),
4.20 (1 H, t, J06.5 Hz), 4.29 (1 H, dd, J04.0, 12.2 Hz), 4.36 (1 H, dd, J0
6.8, 10.5 Hz), 4.46 (1 H, dd, J07.2, 10.5 Hz), 4.63 (1 H, d, J07.5 Hz), 5.09
(1 H, t, J09.9 Hz), 5.25 (1 H, d, J08.0 Hz), 5.51 (1 H, ddd, J03.9, 5.5,
11.1 Hz), 5.62 (1 H, br s), 6.99 (4 H, s), 7.30–7.38 (8 H, m). 13C NMR
(125 MHz, CDCl3) δ 14.1, 20.6, 20.7, 20.9, 22.6, 29.3, 29.6, 31.9, 35.0,
37.3, 47.1, 52.3, 54.8, 61.9, 66.8, 68.5, 68.8, 69.0, 95.3, 116.4, 120.0,
124.9, 125.0, 127.0, 127.7, 129.6, 130.3, 141.3, 143.6, 143.7, 155.3, 155.5,
169.8, 170.2, 170.6, 171.8. ESI-HRMS: Calcd for C37H39NO12Na (M+Na)
712.2370,, found 712.2365. Compound 5d: 1H NMR (500 MHz, CDCl3)
δ 1.91 (3 H, s), 2.03 (3 H, s), 2.07 (1 H, dd, J04.6, 12.8 Hz), 2.16 (3 H, s),
2.23 (1 H, td, J03.2, 12.4 Hz), 3.06 (2 H, dd, J06.0, 14.0 Hz), 3.74 (3 H, s),
4.04 (2 H, d, J06.4 Hz), 4.18 (2 H, d, J06.4 Hz), 4.35 (1 H, dd, J07.5,
10.5 Hz), 4.45 (1 H, dd, J07.5, 10.5 Hz), 4.64 (1 H, d, J07.5 Hz), 5.22
(1 H, d, J08.2 Hz), 5.37 (1 H, s), 5.47 (1 H, ddd, J03.7, 4.4, 8.0 Hz), 5.67
(1 H, br s), 6.98 (4 H, s), 7.30–7.38 (8 H, m). 13C (125 MHz, CDCl3) δ
14.1, 20.5, 20.7, 20.8, 29.6, 30.2, 37.3, 47.1, 52.3, 54.8, 61.9, 65.9, 66.3,
66.8, 67.4, 95.9, 166.5, 120.0, 124.9, 125.0, 127.0, 127.7, 129.5, 130.3,
141.3, 143.7, 143.8, 155.5, 170.1, 170.2, 170.3, 171.8. ESI-HRMS: Calcd
for C37H39NO12Na (M+Na) 712.2370,, found 712.2365. Compound 3g:
1H NMR (500 MHz, CDCl3) δ 1.98–2.14 (10 H, m), 2.47 (1 H, dd, J05.0,
13.0 Hz), 4.01 (2 H, t, J06.0 Hz), 4.31 (1 H, dd, J06.0, 13.0 Hz), 5.08 (1 H,
t, J010.0 Hz), 5.44–5.48 (1 H, m), 5.62 (1 H, d, J03.0 Hz), 6.49–6.68(3 H,
m). 13C NMR (125 MHz, CDCl3) δ 20.5, 20.6, 20.8, 34.6, 61.9, 68.4, 68.8,
68.9, 95.6, 97.8, 98.0, 98.2, 100.1, 100.2, 100.3, 100.4, 157.7, 162.3,
162.4, 164.3, 164.4, 169.7, 170.1, 170.4. ESI-MS: Calcd for
C18H20F2O8Na (M+Na) 425.10, found 425.01. Anal. Calcd for
C18H20F2O8: C, 53.73; H, 5.01. Found: C, 53.93; H, 5.11. Compound
5g: 1H NMR (500 MHz, CDCl3) δ 1.95 (3 H, s), 2.03 (3 H, s), 2.11 (1 H,
dd, J05.0, 10.0 Hz), 2.15 (3 H, s), 2.24 (1 H, dd, J05.0, 10.0 Hz), 4.04–
4.12 (2 H, m), 4.19 (1 H, t, J05.0 Hz), 5.38 (1 H, s), 5.41–5.44 (1 H, m),
5.67 (1 H, d, J03.0 Hz), 6.47–6.64 (3 H, m). 13C NMR (125 MHz, CDCl3)
δ 20.4, 20.6, 20.8, 29.9, 62.0, 65.6, 67.2, 67.9, 96.4, 87.7, 97.9, 98.1, 100.2,
100.3, 100.4, 100.5, 158.0, 162.4, 162.5, 164.3, 164.5, 169.9, 170.1, 170.4.
ESI-MS: Calcd for C18H20F2O8Na (M+Na) 425.10, found 425.04. Anal.
Calcd for C18H20F2O8: C, 53.73; H, 5.01. Found: C, 53.93; H, 5.11.
9
OAc
OAc
OAc
OAc
OAc
OAc
OAc
OAc
10
11
12
13
14
15
16
H
p-CH3
p-OCH3
tyrosinec
p-NO2
o-CH3
3,5-di-F
phenyld
H
H
H
H
H
5g
5h
H
a Reaction condition: TMSOTf (0.3 equiv), glycosyl acetates (1.0 equiv)
and phenols (1.5 equiv) were stirred in CH2Cl2 at 0 °C
b Isolated yield
c N-Fmoc-(L)-tyrosine methyl ester
d 2-Naphthol
panel of phenols (2a-h in Fig. 1) as acceptors1. From Table 3,
we can conclude that not only the phenols with electron-
donating substituents (entries 2, 3 and 4), but also those with
electron-withdrawing (entry 5, 7 and 8) and hindered phenols
(entry 6) could give excellent results. All the reactions pro-
vided the corresponding 2-deoxy α-aryl-O-glycosides 3a-h as
the only detectable glycosylation products in good to excellent
yields (79–95 %). Additionally, the undesired C-aryl
1 Experimental procedure: The 2-deoxy glycosyl acetate 1 or 4
(30 mg, 0.09 mmol), 4 Å molecular sieves, and 2a-g (1.5 equiv) were
combined with 0.3 equvilent of TMSOTf in anhydrous dichlorome-
thane (3 ml) at 0 °C. After 0.5–3.0 h, the molecular sieves was filtered
off, followed the reaction mixture washed with iced saturated NaHCO3
and iced brine, dried over anhydrous Na2SO4, and concentrated in
vacuum. The residue was purified by silica gel column chromatogra-
phy to obtain products (petroleum ether/ethyl acetate 05/1, v/v).