DFT and experimental
10 (1H) and 50 mg (13C) of the compound in 0.5 ml of the solvent
(CDCl3). All NMR measurements were made on 5-mm NMR tubes.
K. V. Domasevich. J. Chem. Soc. Dalton Trans. 1996, 11, 2351. c)E. Abele,
R. Abele, E. Lukevics. Chem. Heterocycl. Comp. 2003, 39, 825. d)C. J.
Milios, T. C. Stamatato, J. P. Perlepes. Polyhedron 2006, 25, 134.
[10] B. K. Singh, U. K. Jetley, R. K. Sharma, B. Sgarg. Spectrochim. Acta A
2007, 68, 63.
1
The spectral parameters for H were as follows: spectral width,
5387.9–10330.6 Hz; acquisition time, 1.59–2.50 s; digital resolu-
tion, 0.2–0.4 Hz; and number of scans, 16–32. For 13C, the spectral
parameters were as follows: spectral width, 24038.5–30030.0 Hz;
acquisition time, 0.50–0.68 s; digital resolution, 0.73–1.00 Hz; and
number of scans, 1024–3382. HOMOCOSY phase-sensitive HSQC
spectra were recorded on a Bruker DRX 500 NMR spectrometer
using standard parameters. Avatar-330 FT-IR spectrophotometer
was used for recording IR spectra (KBr pellet).
[11] H. Rau, in Photochemistry and Photophysics, vol. 2 Ed: (Ed: J. F. Rabek),
CRC Press, Boca Raton, Florida, 1990, pp. 119.
[12] H. Zollinger, Colour Chemistry, Synthesis, Properties and Application
of Organic Dyes, VCH, Weinheim, 1987.
[13] M. R. Han, Y. Hirayama. M. Hara. Chem. Mater. 2006, 18, 2784.
[14] a)Z. Sekkat, W. Knoll (Eds) Eds, Photoreactive Organic Thinfilms,
Academic Press, Amsterdam, 2002, pp. 272. b)H. Rau. Angew. Chem.
Int. Ed. 1972, 12, 224. c)C. G. Morgante, W. S. Struve. Chem. Phys. Lett.
1979, 68, 267.
[15] R. Weber, B. Winter, I. V. Hertel, B. Stiller, S. Schrader, L. Brehmen,
N. Koch. J. Phys. Chem. B 2003, 107, 7768.
[16] H. Akiyama, K. Tamada, J. Nagasawa, K. Abe, T. Tamaki. J. Phys. Chem.
B 2003, 107, 130.
[17] O. Srinivas, N. Mitra, A. Surolia, N. Jayaraman. J. Am. Chem. Soc. 2002,
124, 2124.
[18] S. Shinkai, T. Minami, Y. Kusono, O. Manobe. J. Am. Chem. Soc. 1991,
113, 7963.
Computational study
Geometry optimizations were carried out according to density
functional theory available in Gaussian-03 package using
B3LYP/6-31 G(d,p) basis set.[24] The 1H, 13C, 15N and 17O chemical
shifts were determined theoretically by the DFT method in CDCl3
using the solvation model PCM (SCRF = PCM) and the basis set
B3LYP/6-311 + G(2d,p) GIAO. IR frequencies and NBO charges
were also determined using the basis set B3LYP/6-31 G(d,p),
[19] S. Shinkai, T. Nakaji, Y. Nishida, T. Ogawa, O. Manobe. J. Am. Chem.
Soc. 1980, 102, 5860.
[20] D. S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic
Molecules and Crystals, Academic Press, New York, 1987.
[21] a)K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama,
R. B. Comizzoli, H. E. Kalz, M. L. Schilling. Appl. Phys. Lett. 1988, 52,
1800. b)H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson. Macro-
molecules 1988, 21, 526. c)H. I. Hampsh, J. Yang, G. K. Wong, J. M.
Torkelson. Polym. Commun. 1989, 30, 40. d)P. Pantelis, J. R. Hill,
S. N. Oliver, G. J. Davies. Brit. Telecom Technol. J. 1988, 6, 5.
[22] A. Karakas, A. Elmali, H. Unver, I. Svoboda. Spectrochim. Acta A 2005,
61, 2979.
Acknowledgement
The authors thank the NMR Research Centre, Indian Institute of
Science, Bangalore, for recording the NMR spectra.
References
[23] A. Manimekalai, R. Balachander. J. Mol. Struct. 2012, 1027, 175.
[24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann,
J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin,
M. C. Strain, O. Farkas, J. Tomasa, V. Barone, M. Cossi, R. Cammi,
B. Mennucci, C. Pomeli, C. Adamo, S. Clifford, J. Ochterski, G. A. Peterson,
P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Poresman, J. Cioslowski,
J. N. Ortiz, A. G. Babboul, B. B. Stefavov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keeth,
M. A. Allaham, C. Y. Peng, A. Nanayakkara, M. W. Wong, J. L. Anders,
C. Gonzales, M. Challacombe, P. M. Gill, B. Johnson, W. Chen,
M. Head-Gordon, E. S. Replogle, J. A. Peple, Gaussian 98, Revision
A. 9, Gaussian IC, Pittsburgh, Pa, 2001.
[1] A. S. Burlov, S. A. Nikolaevskii, A. S. Bogomyarov, I. S. Vasilchenko,
Y. V. Koshchienko, V. G. Vlasenko, A. I. Uraev, D. A. Garnovskii,
E. V. Sennikova, G. S. Borodkin, A. D. Garnovskii, V. I. Minkin. Russ.
J. Coord. Chem. 2009, 35, 486.
[2] A. D. Garnovskii, A. S. Burlov, A. G. Starikov, A. V. Metelitsa, I. S. Vasilchenko,
S. O. Bezugliy, S. A. Nikolaevskii, I. G. Borodkina, V. I. Minkin. Russ.
J. Chem. 2010, 36, 479.
[3] V. Padmini. Arch. Appl. Sci. Res. 2010, 2, 356.
[4] N. Kurtoglu. J. Serb. Chem. Soc. 2009, 74, 917.
[5] M. L. Schilling, H. E. Kalz. Chem. Mater. 1989, 1, 668.
[6] E. J. Harbron, D. A. Vicente, M. T. Hoyt. J. Phys. Chem. B 2004, 108,
18789.
[7] S. Wang, R. C. Advincula. Org. Lett. 2001, 3, 3831.
[8] S. Yokoyama, T. Nakahama, A. Otomo, S. Mashiko. J. Am. Chem. Soc.
2000, 122, 3174.
[25] A. Manimekalai, R. Balachander. J. Struct. Chem. 2012(under
revision).
[9] a)H. A. Kists, E. F. Szymanski, D. E. Dorman. J. Antibiot. 1978, 28, 286.
b)V. V. Ponomareva, N. K. Dalley, K. Xiaolan, N. N. Gerasimchuk,
[26] M. Odabasoglu, C. Albaycak, R. Ozkanca, F. Z. Aykan, P. Lonecke.
J. Mol. Struct. 2007, 840, 71.
Magn. Reson. Chem. (2012)
Copyright © 2012 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/mrc