K. Chun et al. / Bioorg. Med. Chem. Lett. 23 (2013) 3983–3987
3987
Table 6
12. Bhat, R.; Xue, Y.; Berg, S.; Hellberg, S.; Ormo, M.; Nilsson, Y.; Radesater, A. C.;
Jerning, E.; Markgren, P. O.; Borgegard, T.; Nylof, M.; Gimenez-Cassina, A.;
Hernandez, F.; Lucas, J. J.; Diaz-Nido, J.; Avila, J. J. Biol. Chem. 2003, 278, 45937.
13. Lescot, E.; Bureau, R.; Sopkova-de Oliveira Santos, J.; Rochais, C.; Lisowski, V.;
Lancelot, J. C.; Rault, S. J. Chem. Inf. Model. 2005, 45, 708.
14. Meijer, L.; Flajolet, M.; Greengard, P. Trends Pharmacol. Sci. 2004, 25, 471.
15. Sereno, L.; Coma, M.; Rodriguez, M.; Sanchez-Ferrer, P.; Sanchez, M. B.; Gich, I.;
Agullo, J. M.; Perez, M.; Avila, J.; Guardia-Laguarta, C.; Clarimon, J.; Lleo, A.;
Gomez-Isla, T. Neurobiol. Dis. 2009, 35, 359.
16. Kramer, T.; Schmidt, B.; Lo Monte, F. Int. J. Alzheimers Dis. 2012, 2012, 381029.
17. Gadakar, P. K.; Phukan, S.; Dattatreya, P.; Balaji, V. N. J. Chem. Inf. Model. 2007,
47, 1446.
18. Bertrand, J. A.; Thieffine, S.; Vulpetti, A.; Cristiani, C.; Valsasina, B.; Knapp, S.;
Kalisz, H. M.; Flocco, M. J. Mol. Biol. 2003, 333, 393.
Off-target screening results of 17c at 10 l
Ma
Targets
AMPK
CDK2/cyclinA (human)
CDK5/p25 (human)
CHK1 (human)
CK2 (human)
CSK (human)
GSK3
GSK3b (human)
JNK1 1 (human)
Inhibition (%)
Targets
Inhibition (%)
a
1 (human)
À1
54
53
21
5
p70S6K (human)
PDK1 (human)
14
10
25
0
12
18
14
27
34
À1
1
PhKc2 (human)
PKA (human)
PKB
PKC
a
a
(human)
(human)
À29
99
90
9
a
(human)
PRAK (human)
ROCK-II (human)
Rsk2 (human)
SAPK2a (human)
SAPK2b (human)
SAPK3 (human)
SAPK4 (human)
SGK (human)
a
19. Polychronopoulos, P.; Magiatis, P.; Skaltsounis, A. L.; Myrianthopoulos, V.;
Mikros, E.; Tarricone, A.; Musacchio, A.; Roe, S. M.; Pearl, L.; Leost, M.;
Greengard, P.; Meijer, L. J. Med. Chem. 2004, 47, 935.
Lck (human)
19
15
19
9
MAPK1 (human)
MAPKAP-K2 (human)
MEK1 (human)
MSK1 (human)
5
2
22
20. Young, J. R.; Huang, S. X.; Walsh, T. F.; Wyvratt, M. J.; Yang, Y. T.; Yudkovitz, J.
B.; Cui, J.; Mount, G. R.; Ren, R. N.; Wu, T. J.; Shen, X.; Lyons, K. A.; Mao, A. H.;
Carlin, J. R.; Karanam, B. V.; Vincent, S. H.; Cheng, K.; Goulet, M. T. Bioorg. Med.
Chem. Lett. 2002, 12, 827.
9
a
21. Compound 17C: 1H NMR (400 MHz, DMSO-d6) d 12.59(s, 1H), 8.80 (d, J = 6.6 Hz,
2H), 7.97 (d, J = 6.6 Hz, 2H), 7.22 (s, 1H), 6.70 (br, 1H), 5.90 (s, 1H), 3.21 (t,
J = 6.8 Hz, 2H), 2.95 (t, J = 7.2 Hz, 2H), 2.00–1.94 (m, 2H); LC–MS (ESI+) m/z
304.1 [M+H+].
nel (Table 6).25,26 Pharmacokinetic study has shown that 17c has
better properties than 17d in terms of oral bioavailability (F), clear-
ance (CL), half life (t1/2), and area under the curve (AUC). In addi-
tion, 17c has good water solubility (>10 mg/ml). A blood-brain
barrier (BBB) permeability study using SD rat revealed that 17c
can penetrate into the brain. The off-target screening results re-
vealed that inhibition percentages of 17c against CDK2 and CDK5
22. de Raemy-Schenk, A. M.; Trouble, S.; Gaillard, P.; Page, P.; Gotteland, J. P.;
Scheer, A.; Lang, P.; Yeow, K. Assay Drug Dev. Technol. 2006, 4, 525.
23. The inhibitory effect of GSK-3 inhibitors was determined using human
recombinant GSK-3 enzyme (upstate, Cat No. 14-306) and Phospho-Glycogen
Synthase Peptide-2 (GS2, upstate, Cat No. 12-241) according to the
manufacturer’s recommendations. Briefly, GSK-3 (1 ng/well) was pre-
incubated with the kinase reaction buffer [12 mM MOPS (pH 7.0), 1 mM DTT,
1 mM EDTA, 10 mM MgCl2] supplemented with 6.67 lM Phospho-Glycogen
Synthase Peptide-2 (GS2, YRRAAVPPSPSLSRHSSPHQ(pS)EDEEE) and enzyme
buffer [2 mM MOPS (pH 7.0), 0.01 mM EDTA, 0.001% Brij-35, 0.5% glycerol,
0.1 mg BSA, 0.01% 2-mercaptoethanol] for test compound (DMSO, 1% final
concentration) in a 96 well round bottom plate (corning, Cat No. 3365). We
also prepared a negative control without GSK-3 inhibitor, providing a 100%
were 54% and 53% at a concentration of 10 lM, respectively, be-
cause the hinge region interactions of GSK-3 are similar to those
described for CDK inhibitors.14 CDK2 is known not to be expressed
in the brain and CDK5, a protein involved in tau phosporylation, is
implicated in Alzheimer’s disease.11,19
activity reference point. After 10 min of incubation at 30 °C,
1 lM non-
radioactive ATP or 0.2 Ci 33P-gamma-ATP were added to reaction mixtures.
l
In conclusion, we reported synthesis and biological evaluation
of 8-amino-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one derivatives as
glycogen synthase kinase-3 (GSK-3) inhibitors. Compound 17c,
having desirable oral PK and water solubility, was found to be po-
tent in enzyme and cell-based assays (IC50 = 111 nM,
The plate was incubated at 30 °C for 30 min and then was stopped by adding of
3% phosphoric acid. All of the terminated kinase reaction was transferred to
P81 Ion Exchange Papers (Whatman, Cat No. 3698-915) using a cell harvester
(Inotech, Cat No. IH-110). Plates were washed 4 times with 0.5% phosphoric
acid solution and 1 time with acetone. 3 ml of scintillation cocktail was added,
and readout was performed using the Liquid Scintillation counter (Wallac, Cat
No. 1409). The result analysis was performed using SigmaPlot 10 (Systat
Software Inc., USA) to calculate IC50 values of the compounds. All mean values
were obtained from triplicate experiments.
EC50 = 1.78 lM). We are planning further studies to find out thera-
peutic candidate for the treatment of Alzheimer’s disease, cancers,
24. Cell culture: H4IIE cells were cultured routinely in grown as monolayers in
growth medium at an atmosphere of 95% air and 5% CO2 equilibrated at 37 °C.
The growth medium consisted of Dulbecco’s Modified Eagle’s Medium
and so on.
Acknowledgments
supplemented with 10% fetal bovine serum, 2 mM
L-glutamine and 1%
penicillin–streptomycin solution. Cells were passaged every 3–4 days when
they reached 75% confluence.
Cell-based assay: Cells were plated on 96-well tissue culture plates at a density
This study was supported by a Grant from the Korea Healthcare
Technology R&D Project, Ministry for Health, Welfare & Family Af-
fairs, Republic of Korea (A091049-1222-0000300).
of 100,000 cells/well in a volume of 100
for approximately 3 h. Cells were washed in phosphate-buffered saline and
100 l of glucose production medium (glucose- and serum-free Dulbecco’s
ll of growth medium and left to attach
l
Modified Eagle’s Medium, containing 20 mM sodium lactate and 2 mM sodium
pyruvate solution) was added. The cells were left overnight at 37 °C in 5% CO2.
References and notes
The next day, the medium was replaced with 90
medium. Dilutions of compounds were performed in glucose production
medium and a 10 l volume was added to the cells. The treated cells were left
overnight and the following day a volume of 10 l medium was pipetted into
the 384-well black plate. 10
l of Amplex RedÒ working solution was then
added to each well and the plate was left in the dark for 30 min. The Amplex
RedÒ glucose/glucose oxidase assay kit is used to measure the modulation of
glucose production in H4IIE Cells. The fluorescence was measurement using
Wallac EnVisionTM plate reader (PerkinElmer Oy, Turku, Finland) at 560 nm
(ex) and 615 nm (em). Analysis of the results was performed using SigmaPlot
10 (Systat Software Inc., USA) to calculate EC50 values of the compounds. All
mean values were obtained from triplicate experiments.
ll of fresh glucose production
1. Woodgett, J. R. EMBO J. 1990, 9, 2431.
2. Ali, A.; Hoeflich, K. P.; Woodgett, J. R. Chem. Rev. 2001, 101, 2527.
3. Grimes, C. A.; Jope, R. S. Prog. Neurobiol. 2001, 65, 391.
4. Woodgett, J. R.; Plyte, S. E.; Pulverer, B. J.; Mitchell, J. A.; Hughes, K. Biochem.
Soc. Trans. 1993, 21, 905.
l
l
l
5. Takashima, A. J. Alzheimers Dis. 2006, 9, 309.
6. Koh, S. H.; Noh, M. Y.; Kim, S. H. Brain Res. 2008, 1188, 254.
7. Cline, G. W.; Johnson, K.; Regittnig, W.; Perret, P.; Tozzo, E.; Xiao, L.; Damico, C.;
Shulman, G. I. Diabetes 2002, 51, 2903.
8. Phukan, S.; Babu, V. S.; Kannoji, A.; Hariharan, R.; Balaji, V. N. Br. J. Pharmacol.
2010, 160, 1.
9. Frame, S.; Cohen, P. Biochem. J. 2001, 359, 1.
25. Gong, L.; Hirschfeld, D.; Tan, Y. C.; HeatherHogg, J.; Peltz, G.; Avnur, Z.; Dunten,
P. Bioorg. Med. Chem. Lett. 2010, 20, 1693.
26. Saitoh, M.; Kunitomo, J.; Kimura, E.; Iwashita, H.; Uno, Y.; Onishi, T.; Uchiyama,
N.; Kawamoto, T.; Tanaka, T.; Mol, C. D.; Dougan, D. R.; Textor, G. P.; Snell, G. P.;
Takizawa, M.; Itoh, F.; Kori, M. J. Med. Chem. 2009, 52, 6270.
10. Cohen, P.; Goedert, M. Nat. Rev. Drug Disc. 2004, 3, 479.
11. Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bibb, J. A.; Snyder, G. L.;
Greengard, P.; Biernat, J.; Wu, Y. Z.; Mandelkow, E. M.; Eisenbrand, G.; Meijer, L.
J. Biol. Chem. 2001, 276, 251.