Tokunaga et al.
JOCArticle
of pseudorotaxanes, in response to external stimuli is an
attractive challenge because such switching systems would
aid the development of molecular sensors,3 functionalized
surfaces,3e,4 nanovalves,5 and drug delivery systems.6,7
Many molecular switch systems based on rotaxane struc-
tures respond to external stimuli, including light,8 electro-
chemical reduction and oxidation,8b,9 temperature,10
pH,9a,11 solvent polarity,12 and chemical additives.11k,13 In
real device applications, it would probably be more prefer-
able to use physical external stimuli, rather than internal
chemical stimuli, to perform repeated reversible molecular
switching to avoid any build-up of unwanted chemical
species.
(5) Selected reviews on nanovalves: (a) Saha, S.; Leung, K. C.-F.;
Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. Adv. Funct. Mater. 2007, 17,
685–693. (b) Angelos, S.; Johansson, E.; Stoddart, J. F.; Zink, J. I. Adv.
Funct. Mater. 2007, 17, 2261–2271.
(6) Selected reviews on drug delivery system: (a) Yui, N.; Ooya, T.
Chem.;Eur. J. 2006, 12, 6730–6737. (b) Loethen, S.; Kim, J.-M.; Thompson,
D. H. Polym. Rev. 2007, 47, 383–418. (c) Li, J.; Loh, X. J. Adv. Drug Delivery
Rev. 2008, 60, 1000–1017.
Pressure is a fundamental physical stimulus that influences
thermodynamic and kinetic parameters. Studies of pressure-
dependent reactions reveal information on the volume
change during the process, akin to studies of temperature-
dependent reactions to obtain the energy of the process.14
For any reaction in solution, the reaction volume ΔV is
defined as the volume difference between the substrate(s) and
product(s), and the activation volume ΔVq is equal to the
value obtained after subtracting the volume of the transition
(7) Rotaxane transporting systems: (a) Bao, X.; Isaacsohn, I.; Drew,
A. F.; Smithrud, D. B. J. Am. Chem. Soc. 2006, 128, 12229–12238. (b) Wang,
X.; Bao, X.; McFarland-Mancini, M.; Isaacsohn, I.; Drew, A. F.; Smithrud,
D. B. J. Am. Chem. Soc. 2007, 129, 7284–7293.
(8) (a) Murakami, H.; Kawabuchi, A.; Kotoo, K.; Kunitake, M.;
Nakashima, N. J. Am. Chem. Soc. 1997, 119, 7605–7606. (b) Armaroli, N.;
~
Alzani, V. B.; Collin, J.-P.; Gavina, P.; Sauvage, J.-P.; Ventura, B. J. Am.
Chem. Soc. 1999, 121, 4397–4408. (c) Ashton, P. R.; Ballardini, R.; Balzani,
V.; Credi, A.; Dress, K. R.; Ishow, E.; Kleverlaan, C. J.; Kocian, O.; Preece,
J. A.; Spencer, N.; Stoddart, J. F.; Venturi, M.; Wenger, S. Chem.;Eur. J.
2000, 6, 3558–3574. (d) Wurpel, G. W. H.; Brouwer, A. M.; van Stokkum,
I. H. M.; Farran, A.; Leigh, D. A. J. Am. Chem. Soc. 2001, 123, 11327–11328.
(e) Brouwer, A. M.; Frochot, C.; Gatti, F. G.; Leigh, D. A.; Mottier, L.;
Paolucci, F.; Roffia, S.; Wurpel, G. W. H. Science 2001, 291, 2124–2128.
(f ) Stanier, C. A.; Alderman, S. J.; Claridge, T. D. W.; Anderson, H. L.
Angew. Chem., Int. Ed. 2002, 41, 1769–1772. (g) Tokunaga, Y.; Akasaka, K.;
Hisada, K.; Shimomura, Y.; Kakuchi, S. Chem. Commun. 2003, 2250–2251.
(11) (a) Martınez-Dıaz, M.-V.; Spencer, N.; Stoddart, J. F. Angew.
´ ´
Chem., Int. Ed. 1997, 36, 1904–1907. (b) Ashton, P. R.; Ballardini, R.;
ꢁ
Balzani, V.; Baxter, I.; Credi, A.; Fyfe, M. C. T.; Gandolfi, M. T.; Gomez-
ꢀ
ꢁ
Lopez, M.; Martınez-Dıaz, M.-V.; Piersanti, A.; Spencer, N.; Stoddart, J. F.;
´ ´
(h) Bottari, G.; Leigh, D. A.; Perez, E. M. J. Am. Chem. Soc. 2003, 125,
13360–13361. (i) Altieri, A.; Bottari, G.; Dehez, F.; Leigh, D. A.; Wong,
J. K. Y.; Zerbetto, F. Angew. Chem., Int. Ed. 2003, 42, 2296–2300. ( j) Wang,
Q.-C.; Qu, D.-H.; Ren, J.; Chen, K.; Tian, H. Angew. Chem., Int. Ed. 2004,
43, 2661–2665. (k) Qu, D.-H.; Wang, Q.-C.; Ren, J.; Tian, H. Org. Lett. 2004,
6, 2085–2088. (l) Abraham, W.; Grubert, L.; Grummt, U. W.; Buck, K.
Venturi, M.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1998, 120,
11932–11942. (c) Keaveney, C. M.; Leigh, D. A. Angew. Chem., Int. Ed. 2004,
43, 1222–1224. (d) Tokunaga, Y.; Nakamura, T.; Yoshioka, M.;
Shimomura, Y. Tetrahedron Lett. 2006, 47, 5901–5904. (e) Badjic, J. D.;
Ronconi, C. M.; Stoddart, J. F.; Balzani, V.; Silvi, S.; Credi, A. J. Am. Chem.
Soc. 2006, 128, 1489–1499. (f ) Sindelar, V.; Silvi, S.; Kaifer, A. E. Chem.
Commun. 2006, 2185–2187. (g) Ooya, T.; Inoue, D.; Choi, H. S.; Kobayashi,
Y.; Loethen, S.; Thompson, D. H.; Ko, Y. H.; Kim, K.; Yui, N. Org. Lett.
2006, 8, 3159–3162. (h) Leigh, D. A.; Thomson, A. R. Org. Lett. 2006, 8,
5377–5379. (i) Tuncel, D.; Oezsar, O.; Tiftik, H. B.; Salih, B. Chem. Commun.
2007, 1369–1371. ( j) Vella, S. J.; Tiburcio, J.; Loeb, S. J. Chem. Commun.
2007, 4752–4754. (k) Lin, C.-L.; Lai, C.-C.; Liu, Y.-H.; Peng,
S.-M.; Chiu, S.-H. Chem.;Eur. J. 2007, 13, 4350–4355. (l) Coutrot, F.;
Romuald, C.; Busseron, E. Org. Lett. 2008, 10, 3741–3744. (m) Coutrot, F.;
Busseron, E. Chem.;Eur. J. 2008, 14, 4784–4787. (n) Berna, J.; Goldup,
S. M.; Lee, A.-L.; Leigh, D. A.; Symes, M. D.; Teobaldi, G.; Zerbetto, F.
Angew. Chem., Int. Ed. 2008, 47, 4392–4396. (o) Leung, K, C.-F.; Chak, C.-
P.; Lo, C.-M.; Wong, W.-Y.; Xuan, S.; Cheng, C. H. K. Chem. Asian J. 2009,
4, 364–381.
(12) (a) Gong, C.; Gibson, H. W. Angew. Chem., Int. Ed. 1997, 36, 2331–
2333. (b) Lane, A. S.; Leigh, D. A.; Murphy, A. J. Am. Chem. Soc. 1997, 119,
11092–11093. (c) Gong, C.; Glass, T. E.; Gibson, H. W. Macromolecules
1998, 31, 308–313. (d) Ros, T. D.; Guldi, D. M.; Morales, A. F.; Leigh, D. A.;
Prato, M.; Turco, R. Org. Lett. 2003, 5, 689–691. (e) Hannam, J. S.; Lacy,
S. M.; Leigh, D. A.; Saiz, C. G.; Slawin, A. M. Z.; Stitchell, S. G. Angew.
Chem., Int. Ed. 2004, 43, 3260–3264. (f ) Onagi, H.; Rebek, J., Jr. Chem.
Commun. 2005, 4604–4606. (g) Mateo-Alonso, A.; Fioravanti, G.; Marcaccio,
M.; Paolucci, F.; Jagesar, D. C.; Brouwer, A. M.; Prato, M. Org. Lett. 2006, 8,
5173–5176. (h) Mateo-Alonso, A.; Ehli, C.; Rahman, G. M. A.; Guldi, D. M.;
Fioravanti, G.; Marcaccio, M.; Paolucci, F.; Prato, M. Angew. Chem., Int. Ed.
2007, 46, 3521–3525. (i) Mateo-Alonso, A.;Iliopoulos,K.;Couris, S.; Prato, M.
J. Am. Chem. Soc. 2008, 130, 1534–1535. ( j) Lin, T.-C.; Lai, C.-C.; Chiu, S.-H.
Org. Lett. 2009, 11, 613–616.
ꢁ
Chem.;Eur. J. 2004, 10, 3562–3568. (m) Perez, E. M.; Dryden, D. T. F.;
Leigh, D. A.; Teobaldi, G.; Zerbetto, F. J. Am. Chem. Soc. 2004, 126, 12210–
12211. (n) Li, Y.; Li, H.; Li, Y.; Liu, H.; Wang, S.; He, X.; Wang, N.; Zhu, D.
Org. Lett. 2005, 7, 4835–4838. (o) Berna, J.; Leigh, D. A.; Lubomska, M.;
Mendoza, S. M.; Perez, E. M.; Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nat.
Mater. 2005, 4, 704–710. (p) Murakami, H.; Kawabuchi, A.; Matsumoto, R.;
Ido, T.; Nakashima, N. J. Am. Chem. Soc. 2005, 127, 15891–15899. (q) Qu,
D.-H.; Wang, Q.-C.; Tian, H. Angew. Chem., Int. Ed. 2005, 44, 5296–5299. (r)
Zhou, W.; Chen, D.; Li, J.; Xu, J.; Lv, J.; Liu, H.; Li, Y. Org. Lett. 2007, 9,
3929–3932. (s) Serreli1, V.; Lee, C.-F.; Kay, E. R.; Leigh, D. A. Nature 2007,
445, 523–527.
ꢁ
(9) Electrochemically switchable rotaxanes: (a) Bissell, R. A.; Cordova,
E.; Kaifer, A. E.; Stoddart, J. F. Nature 1994, 369, 133–137. (b) Ballardini,
R.; Balzani, V.; Dehaen, W.; Dell’Erba, A. E.; Raymo, F. M.; Stoddart, J. F.;
Venturi, M. Eur. J. Org. Chem. 2000, 591–602. (c) Collier, C. P.; Jeppesen,
J. O.; Luo, Y.; Perkins, J.; Wong, E. W.; Heath, J. R.; Stoddart, J. F. J. Am.
Chem. Soc. 2001, 123, 12632–12641. (d) Badjic, J. D.; Balzani, V.; Credi, A.;
Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845–1849. (e) Katz, E.;
Lioubashevsky, O.; Willner, I. J. Am. Chem. Soc. 2004, 126, 15520–15532.
(f ) Altieri, A.; Gatti, F. G.; Kay, E. R.; Leigh, D. A.; Martel, D.; Paolucci, F.;
Slawin, A. M. Z.; Wong, J. K. Y. J. Am. Chem. Soc. 2003, 125, 8644–8654. (g)
Tseng, H.-R.; Vignon, S. A.; Stoddart, J. F. Angew. Chem., Int. Ed. 2003, 42,
1491–1495. (h) Kihara, N.; Hashimoto, M.; Takata, T. Org. Lett. 2004, 6,
1693–1696. (i) Horie, M.; Suzaki, Y.; Osakada, K. J. Am. Chem. Soc. 2004,
126, 3684–3685. ( j) Tseng, H.-R.; Vignon, S. A.; Celestre, P. C.; Perkins, J.;
Jeppesen, J. O.; Fabio, A. D.; Ballardini, R.; Gandolfi, M. T.; Venturi, M.;
Balzani, V.; Stoddart, J. F. Chem.;Eur. J. 2004, 10, 155–172. (k) Jeon, W. S.;
Kim, E.; Ko, Y. H.; Hwang, I. H.; Lee, J. W.; Kim, S. Y.; Kim, H. J.; Kim, K.
Angew. Chem., Int. Ed. 2005, 44, 87–91. (l) Letinois-Halbes, U.; Hanss, D.;
Beierle, J. M.; Collin, J.-P.; Sauvage, J.-P. Org. Lett. 2005, 7, 5753–5756. (m)
Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop, B. H.;
Tseng, H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.;
Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C.-M.; Stoddart, J. F.
J. Am. Chem. Soc. 2005, 127, 9745–9759. (n) Sobransingh, D.; Kaifer, A. E.
Org. Lett. 2006, 8, 3247–3250. (o) Choi, J. W.; Flood, A. H.; Steuerman,
D. W.; Nygoard, S.; Braunsweig, A. B.; Moonen, N. N. P.; Laursen, B. W.;
Luo, Y.; Delonno, E.; Peters, A. J.; Jeppesen, J. O.; Xe, K.; Stoddart, J. F.;
Heath, J. R. Chem.;Eur. J. 2006, 12, 261–279. (p) Zhao, Y.-L.; Dichtel,
W. R.; Trabolsi, A.; Saha, S.; Aprahamian, I.; Stoddart, J. F. J. Am. Chem.
Soc. 2008, 130, 11294–11296. (q) Fioravanti, G.; Haraszkiewicz, N.; Kay,
E. R.; Mendoza, S. M.; Bruno, C.; Marcaccio, M.; Wiering, P. G.; Paolucci,
F.; Rudolf, P.; Brouwer, A. M.; Leigh, D. A. J. Am. Chem. Soc. 2008, 130,
2593–2601.
(13) (a) Jimenez-Molero, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P.
Chem.;Eur. J. 2002, 8, 1456–1466. (b) Vignon, S. A.; Jarrosson, T.; Iijima,
T.; Tseng, H.-R.; Sanders, J. K. M.; Stoddart, J. F. J. Am. Chem. Soc. 2004,
ꢀ
126, 9884–9885. (c) Leigh, D. A.; Perez, E. M. Chem. Commun. 2004, 2262–
2263. (d) Iijima, T.; Vignon, S. A.; Tseng, H.-R.; Jarrosson, T.; Sanders,
J. K. M.; Marchioni, F.; Venturi, M.; Apostoli, E.; Balzani, V.; Stoddart,
J. F. Chem.;Eur. J. 2004, 10, 6375–6392. (e) Marlin, D. S.; Cabrera, D. G.;
Leigh, D. A.; Slawin, A. M. Z. Angew. Chem., Int. Ed. 2006, 45, 77–83. (f )
Marlin, D. S.; Cabrera, D. G.; Leigh, D. A.; Slawin, A. M. Z. Angew. Chem.,
Int. Ed. 2006, 45, 1385–1390. (g) Huang, Y.-L.; Hung, W.-C.; Lai, C.-C.; Liu,
Y.-H.; Peng, S.-M.; Chiu, S.-H. Angew. Chem., Int. Ed. 2007, 46, 6629–6633.
(14) For reviews on high-pressure synthesis of organic compounds, see:
(a) van Eldik, R.; Asano, T.; le Noble, W. J. Chem. Rev. 1989, 89, 549–688. (b)
Drljaca, A.; Hubbard, C. D.; van Eldik, R.; Asano, T.; Basilevsky, M. V.; le
Noble, W. J. Chem. Rev. 1998, 98, 2167–2289. (c) Matsumoto, K.; Sera, A.;
Uchida, T. Synthesis 1985, 1–26. (d) Matsumoto, K.; Sera, A. Synthesis 1985,
999–1027. (e) le Noble, W. J.; Kelm, H. Angew. Chem., Int. Ed. 1980, 19, 841–
856. (f ) Jenner, G. J. Chem. Soc., Faraday Trans. 1 1985, 81, 2437–2460. (g)
Isaacs, N. S. Tetrahedron 1991, 47, 8463–8497. (h) Jenner, G. Tetrahedron
2005, 61, 3621–3635.
ꢁ
(10) (a) Bottari, G.; Dehez, F.; Leigh, D. A.; Nash, P. J.; Perez, E. M. P.;
Wong, J. K. Y.; Zerbetto, F. Angew. Chem., Int. Ed. 2003, 42, 5886–5889. (b)
Jeppesen, J. O.; Nielsen, K. A.; Perkins, J.; Vignon, S. A.; Fabio, A. D.;
Ballardini, R.; Gandolfi, M. T.; Venturi, M.; Balzani, V.; Becher, J.;
Stoddart, J. F. Chem.;Eur. J. 2003, 9, 2982–3007.
J. Org. Chem. Vol. 75, No. 15, 2010 4951