S. Chandrasekhar et al. / Tetrahedron Letters 53 (2012) 6223–6225
6225
CHO
CN
CN
+
+
N
H
O2N
Cu(OAc)2
KH2PO4
PEG-400
70 °C
path A
path B
OH
O2N
CN
NO2
O2N
NC
CN
CN
H
N
+
-H2O
+ H2O
N
H
N
Adduct I
Adduct II
O2N
CN
CN
N
H
Scheme 2. Proposed mechanism for MCR.
5. (a) Konda, S. G.; Humne, V. T.; Lokhande, P. D. Green Chem. 2011, 13, 2354–
2358; (b) Verduyn, L. S. C.; Szyman´ ski, W.; Postema, C. P.; Dierckx, R. A.;
Elsinga, P. H.; Janssen, D. B.; Feringa, B. L. Chem. Commun. 2010, 46, 898–900;
(c) Colacino, E. E.; Villebrun, L.; Martinez, J.; Lamaty, F. Tetrahedron 2010, 66,
3730–3735; (d) Kouznetsov, V.; Arenas, D. R. M.; Bohorquez, A. R. R.
Tetrahedron Lett. 2008, 49, 3097–3100; (e) Chandrasekhar, S.; Prakash, S. Y.;
Rao, C. L. J. Org. Chem. 2006, 71, 2196–2199; (f) Kumar, R.; Chaudary, P.;
Nimesh, S.; Chandra, R. Green Chem. 2006, 8, 356–358. and references cited
therein.
6. For representative examples see: (a) Hu, X.; Ma, Y.; Li, Z. J. Organomet. Chem.
2012, 705, 70–74; (b) Kidwai, M.; Mishra, N. K.; Bhatnagar, D.; Jahan, A. Green
Chem. Lett. Rev. 2011, 4, 109–115; (c) Mali, J. R.; Bhosle, M. R.; Mahalle, S. R.;
Mane, R. A. Bull. Korean Chem. Soc. 2010, 31, 1859–1862. and references cited
therein.
7. (a) Chandrasekhar, S.; Reddy, G. P. K.; Nagesh, C.; Reddy, C. R. Tetrahedron Lett.
2007, 48, 1269–1271; (b) Chandrasekhar, S.; Reddy, N. K.; Kumar, V. P.
Tetrahedron Lett. 2010, 51, 3623–3625; (c) Chandrasekhar, S.; Saritha, B.;
Jagadeshwar, V.; Narashimulu, Ch.; Vijay, D.; Sharma, G. D.; Jagadeesh, B.
Tetrahedron Lett. 2006, 47, 2981–2984.
8. (a) Terada, M.; Moriya, K.; Kanomata, K.; Sorimachi, K. Angew. Chem., Int. Ed.
2011, 50, 12586–12590; (b) Jing, L.; Wei, J.; Huang, Z.; Li, Z.; Wu, D.; Xiang, H.;
Zhou, X. Chem. Eur. J. 2010, 16, 10955–10958.
new process, both the solvent and the catalytic system can be recy-
cled efficiently. Finally, we revealed the mechanistic pathway for
this MCR and the importance of both Cu(OAc)2 and KH2PO4 for
the Michael addition to provide desired indole 3-derivatives with
high yield and variability.
Acknowledgments
This research has been performed as part of the Indo-French
‘Joint Laboratory for Sustainable Chemistry at Interfaces’. We thank
the CSIR, the CNRS, the University of Rennes 1 and the CEFIPRA/
IFCPAR for support of this research. V.P. thanks the CSIR, New Del-
hi, for financial assistance.
Supplementary data
Supplementary data (experimental procedures and compound
characterization) associated with this article can be found, in the
9. (a) Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Tetrahedron Lett. 1978, 20, 1759–
1762; (b) Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Chem. Pharm. Bull. 1982, 30,
3092–3096.
10. Oikawa, Y.; Tanaka, M.; Hirasawa, H.; Yonemitsu, O. Chem. Pharm. Bull. 1981,
29, 1606–1614.
References and notes
11. Epifano, F.; Genovese, S.; Rosati, O.; Tagliapietra, S.; Peluchini, C.; Curini, M.
Tetrahedron Lett. 2011, 52, 568–571.
1. (a) Toure, B. B.; Hall, D. G. In Multicomponent Reactions; Zhu, J., Bienaymé, H.,
Eds.; Wiley-VCH, 2005; (b) Dömling, A. Chem. Rev. 2006, 106, 17–89; (c) Toure,
B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439–4486; (d) Schreiber, S. L. Science
2000, 287, 1964–1969; (e) Carballares, S.; Espinosa, J. F. Org. Lett. 2005, 7, 2329–
2331; (f) Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083–3135;
(g) Shiri, M. Chem. Rev. 2012, 112, 3508–3549. and references cited therein.
2. Leena, G.; Archna, T.; Prem, M. S. C. Curr. Med. Chem. 2007, 14, 1789–1803; (b)
Kumar, A.; Sharma, S.; Maurya, R. A. Tetrahedron Lett. 2009, 50, 5937–5940; (c)
Lee, Y. J.; Han, Y. R.; Park, W.; Nam, S. H.; Oh, K. B.; Lee, H. S. Bioorg. Med. Chem.
Lett. 2010, 20, 6882–6885. and references cited therein.
12. (a) Renzetti, A.; Dardennes, E.; Fontana, A.; Maria, P. D.; Sapi, J.; Gérard, S. J. Org.
Chem. 2008, 73, 6824–6827; (b) Gerard, S.; Renzetti, A.; Lefevre, B.; Fontana, A.;
Maria, P. D.; Sapi, J. Tetrahedron 2010, 66, 3065–3069; (c) Marrone, A.; Renzetti,
A.; De Maria, P.; Gérard, S.; Sapi, J.; Fontana, A.; Re, N. Chem. Eur. J. 2009, 15,
11537–11550.
13. Qu, Y.; Ke, F.; Li, Z.; Xiang, H.; Wu, D.; Zhou, X. Chem. Commun. 2011, 47, 3912–
3914.
14. For a recent paper indicating that the OH groups of PEG can act as ligands for
copper see: Reddy, G. C.; Balasubramanyam, P.; Salvanna, M.; Das, B. Eur. J. Org.
Chem. 2012, 471–474.
3. (a) Feng, T.; Li, Y.; Wang, Y. Y.; Cai, X. H.; Liu, Y. P.; Luo, X. D. J. Nat. Prod. 2010,
73, 1075–1079; (b) Contractor, R.; Samudio, I. J.; Estrov, Z.; Harris, D.;
McCubrey, J. A.; Safe, S. H.; Andreeff, M.; Konopleva, M. Cancer Res. 2005, 65,
2890–2898.
4. (a) Sapi, J.; Laronge, J. Y. Arkivoc 2004, Vii, 208–222; (b) Kumar, A.; Gupta, M. K.;
Kumar, M. Green Chem. 2012, 14, 290–295.
15. It has been demonstrated recently that NH-indoles react, under solvent- and
catalyst-free conditions (neat), with various electrophilic alkenes to give
desired 1,4 adducts but this reaction does not work with N-methylindole: Liu,
X.-L.; Xue, D.; Zhang, Z.-T. J. Heterocycl. Chem. 2011, 48, 489–494.