Job/Unit: O42732
/KAP1
Date: 19-08-14 11:09:02
Pages: 9
Conformationally Constrained Bicyclic Diarylprolinol Silyl Ethers
(0.11 mL), solution B (0.12 mL) and solution A1 or A2 (0.01 mL)
and the reactions were stirred at room temperature and checked
for conversion at the reported time intervals. Conversions were de-
termined with H NMR spectroscopy by using the doublet at δ =
9.59 ppm of the product and the doublet at δ = 9.79 ppm of the
[1]
a) H. Jiang, L. Albrecht, G. Dickmeiss, K. L. Jensen, K. A.
Jørgensen, in: Comprehensive Enantioselective Organocatalysis,
vol. 1 (Ed.: P. I. Dalko), Wiley-VCH, Weinheim, Germany,
2013, p. 33–50; b) H. Gotoh, Y. Hayashi, in: Sustainable Catal-
ysis (Eds.: P. J. Dunn, K. K. Hii, M. J. Krische, M. T. Wil-
liams), John Wiley & Sons, New Jersey, 2013, p. 287–316.
H. Kotsuki, N. Sasakura, in: Comprehensive Enantioselective
1
starting aldehyde.
Organocatalytic Iminium/enamine Cascade Reaction of N-Boc-3-(2-
oxopropyl)oxindole 6 with (E)-Cinnamaldehyde 3b. General Pro-
cedure: The catalyst (1a or 2a; 3.3 mg, 0.01 mmol, 10%) and ben-
zoic acid (0.6 mg, 0.01 mmol, 10%) were added to a solution of 3-
substituted oxindole 6 (29 mg, 0.1 mmol) and (E)-cinnamaldehyde
3b (0.0126 mL, 0.1 mmol, 1 equiv.) in toluene (0.4 mL, 0.25 m). The
reaction was allowed to stir at room temperature and the conver-
[2]
[3]
[4]
Organocatalysis, vol.
1 (Ed.: P. I. Dalko), Wiley-VCH,
Weinheim, Germany, 2013, p. 3–31.
R. Mahrwald, in: Comprehensive Enantioselective Organocata-
lysis, vol. 1 (Ed.: P. I. Dalko), Wiley-VCH, Weinheim, Ger-
many, 2013, p. 69–95.
a) D. Gryko, D. Walaszek, in: Stereoselective Organocatalysis
(Ed.: R. Rios Torres), John Wiley & Sons, New Jersey, 2013,
p. 81–127; b) G. Guillena, in: Modern Methods in Stereoselec-
tive Aldol Reactions (Ed.: R. Mahrwald), Wiley-VCH,
Weinheim, Germany, 2013, p. 155–268.
a) X.-H. Cai, G. Huo, X. Bing, Eur. J. Org. Chem. 2012, 3,
258–266; b) M. Benohoud, Y. Hayashi, in: Science of Synthesis
Asymmetric Organocatalysis, vol. 1 (Eds.: B. List, K. Ma-
ruoka), Thieme, Stuttgart, 2013, p. 73–134.
Y. Zhang, W. Wang, in: Stereoselective Organocatalysis (Ed.:
R. Rios Torres), John Wiley & Sons, New Jersey, 2013, p. 147–
204.
U. Scheffler, R. Mahrwald, Chem. Eur. J. 2013, 19, 14346–
14396.
a) C. M. R. Volla, I. Atodiresei, M. Rueping, Chem. Rev. 2014,
114, 2390–2431; b) H. Pellissier, in: Asymmetric Domino Reac-
tions, RSC Publishing, 2013, 354, p. 251–467.
a) M. Lombardo, S. Easwar, F. Pasi, C. Trombini, Adv. Synth.
Catal. 2009, 351, 276–282; b) E. Montroni, S. P. Sanap, M.
Lombardo, A. Quintavalla, C. Trombini, D. D. Dhavale, Adv.
Synth. Catal. 2011, 353, 3234–3240; c) E. Montroni, M. Lom-
bardo, A. Quintavalla, C. Trombini, M. Gruttadauria, F. Gia-
calone, ChemCatChem 2012, 4, 1000–1006; d) M. Lombardo,
M. Chiarucci, A. Quintavalla, C. Trombini, Adv. Synth. Catal.
2009, 351, 2801–2806.
1
sions were determined by H NMR spectroscopy. When (E)-β-ni-
trostyrene was completely consumed, the reaction mixture was
quenched at 0 °C with HCl (1 m, 2 mL) and the aqueous phase was
extracted with ethyl acetate. The combined organic phases were
dried (Na2SO4) and the solvents evaporated under vacuum. The
product was purified by flash chromatography on silica by eluting
with cyclohexane/ethyl acetate mixtures. 1H NMR (400 MHz,
CDCl3): δ = 10.07 (s, 1 H), 7.73 (d, J = 8.3 Hz, 1 H), 7.12–7.09 (m,
4 H), 6.78–6.76 (m, 2 H), 6.72–6.69 (m, 1 H), 6.20 (d, J = 7.6 Hz,
1 H), 4.60 (s, 1 H), 3.04–2.99 (m, 2 H), 2.42 (s, 3 H), 1.66 (s, 9
H) ppm. The racemic product was synthesized under the same con-
ditions with racemic Jørgensen–Hayashi’s catalysts 2a. The enan-
tiomeric excess was determined by chiral HPLC: IC 80:20 n-Hex/
IPA, 1.0 mL/min, 40 °C, λ = 214 nm; tr = 19.8 min (minor), tr =
39.8 min (major).
[5]
[6]
[7]
[8]
[9]
Organocatalytic Michael Addition of Propanal 9 to β-(E)-Nitrostyr-
ene 10. General Procedure: Propanal (0.0144 mL, 0.2 mmol,
2 equiv.) was added to a solution of catalyst (1a, 2a or 18,
0.01 mmol, 10%), β-(E)-nitrostyrene 10 (14.9 mg, 0.1 mmol) and
eventually benzoic acid (0.6 mg, 0.01 mmol, 10%) in CH2Cl2
(0.4 mL, 0.25 m). The reaction was allowed to stir at room tempera-
ture and the conversions were determined by 1H NMR spec-
troscopy. When the starting materials were completely consumed,
the reaction mixture was quenched with HCl (1 m, 2 mL) and the
aqueous phase was extracted with ethyl acetate. The combined or-
ganic phases were dried (Na2SO4) and the solvents evaporated un-
der vacuum. The product was purified by flash chromatography on
[10]
[11]
M. Lombardo, E. Montroni, A. Quintavalla, C. Trombini, Adv.
Synth. Catal. 2012, 354, 3428–3434.
a) K. L. Jensen, G. Dickmeiss, H. Jiang, L. Albrecht, K. A.
Jørgensen, Acc. Chem. Res. 2012, 45, 248–264; b) M. Nielsen,
D. Worgull, T. Zweifel, B. Gschwend, S. Bertelsen, K. A.
Jørgensen, Chem. Commun. 2011, 47, 632–649.
1
[12]
[13]
a) H. Xie, L. Zu, H. Li, J. Wang, W. Wang, J. Am. Chem. Soc.
2007, 129, 10886–10894; b) R. Rios, H. Sundén, J. Vesely, G.-
L. Zhao, P. Dziedzic, A. Córdova, Adv. Synth. Catal. 2007,
349, 1028–1032; c) I. Ibrahem, G. L. Zhao, R. Rios, J. Vesely,
H. Sundén, P. Dziedzic, A. Córdova, Chem. Eur. J. 2008, 14,
7867–7879.
a) Y. Hayashi, T. Itoh, H. Ishikawa, Angew. Chem. Int. Ed.
2011, 50, 3920–3924; Angew. Chem. 2011, 123, 4006–4010; b)
S. K. Ghosh, Z. Zheng, B. Ni, Adv. Synth. Catal. 2010, 352,
2378–2382; c) I. Mager, K. Zeitler, Org. Lett. 2010, 12, 1480–
1483; d) Y. Wang, P. Li, X. Liang, T. Y. Zhang, J. Ye, Chem.
Commun. 2008, 1232–1234; e) L. Zu, H. Xie, H. Li, J. Wang,
W. Wang, Adv. Synth. Catal. 2007, 349, 2660–2664; f) C. Pal-
omo, A. Landa, A. Mielgo, M. Oiarbide, A. Puente, S. Vera,
Angew. Chem. Int. Ed. 2007, 46, 8431–8435; Angew. Chem.
2007, 119, 8583–8587.
Z.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J.
Grouleff, Y.-C. Chen, K. A. Jørgensen, J. Am. Chem. Soc.
2011, 133, 5053–5061.
M. H. Haindl, M. B. Schmid, K. Zeitler, R. M. Gschwind,
RSC Adv. 2012, 2, 5941–5943.
F. Giacalone, M. Gruttadauria, P. Agrigento, R. Noto, Chem.
Soc. Rev. 2012, 41, 2406–2447.
K. Albertshofer, K. E. Anderson, C. F. Barbas III, Org. Lett.
2012, 14, 5968–5971.
silica by eluting with cyclohexane/ethyl acetate mixtures. H NMR
(400 MHz, CDCl3): δ = 9.72 (d, J = 1.7 Hz, 1 H), 7.37–7.27 (m, 3
H), 7.18–7.13 (m, 2 H), 4.80 (dd, J = 5.5/12.7 Hz, 1 H), 4.68 (dd,
J = 9.3/12.7 Hz, 1 H), 3.81 (dt, J = 5.5/9.1 Hz, 1 H), 2.90–2.69 (m,
1 H), 1.00 (d, J = 7.3 Hz, 3 H) ppm. The racemic product was
synthesized under the same conditions with racemic Jørgensen–
Hayashi’s catalysts 2a. The enantiomeric excess was determined by
chiral HPLC: IC 90:10 n-Hex/IPA, 1.0 mL/min, 40 °C, λ = 214 nm;
tr = 15.1 min (anti, minor), tr = 22.0 min (syn, minor), tr = 25.6 min
(syn, major), tr = 27.4 min (anti, major).
Supporting Information (see footnote on the first page of this arti-
cle): M06-2x/6-311G(d,p)-optimized coordinates of the most stable
conformers of s-trans-(E)-configured enamines 13, 14 and 17; cop-
ies of 1H and 13C NMR of enamines 13 and 14; chiral HPLC traces
of tested reactions.
[14]
Acknowledgments
[15]
[16]
[17]
Financial support by the University of Bologna, the Ministero
dell’Università e della Ricerca (MIUR) (Rome, PRIN 2009) and
the European Union, COST Action (CM0905, Organocatalysis) is
acknowledged.
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7