O21–H21ꢀ ꢀ ꢀN23 1.87(4) A), and (O25ꢀ ꢀ ꢀN21 2.851(3) A,
O25–H25ꢀ ꢀ ꢀN21 1.88(4) A), respectively. The third oxime
moiety forms an O–Hꢀ ꢀ ꢀO interaction (O23ꢀ ꢀ ꢀN25 2.799(3) A,
O23–H23ꢀ ꢀ ꢀN25 1.91(4) A) with a neighbouring molecule.
A versatile and facile mechanochemical path to aldehyde–
oxime transformations has been established by examining 20
different aldehydes with different substituents such as electron
withdrawing (1–6), electron donating (7), structurally active
(8–16), multifunctionalized (17–19) and aliphatic (20) groups.
The synthetic path seems to be substituent insensitive (across the
range examined herein), and the ambient reaction conditions,
ease of scalability, and straightforward work-up procedure make
this route environmentally friendly, and a better and greener
alternative to existing methods for aldoxime synthesis.
Fig. 1 1H NMR spectrum of 3 obtained from ground mixture.
We are grateful for financial support from NSF (CHE-0957607)
and from the Johnson Center for Basic Cancer Research.
Notes and references
1 R. P. Frutos and D. M. Spero, Tetrahedron Lett., 1998, 39, 2475.
2 S. Sasatani, T. Miyazak, K. Maruoka and H. Yamamoto, Tetra-
hedron Lett., 1983, 24, 4711; S. Negi, M. Matsukura, M. Mizuno
and K. Miyake, Synthesis, 1996, 991.
3 N. Anand, N. A. Owston, A. J. Parker, P. A. Slatforda and J. M.
J. Williamsa, Tetrahedron Lett., 2007, 48, 7761; B. A. Mendelsohn,
S. Lee, S. Kim, F. Teyssier, V. S. Aulakh and M. A. Ciufolini, Org.
Lett., 2009, 11, 1539.
4 P. R. Dave and F. Forshar, J. Org. Chem., 1996, 61, 8897;
G. A. Olah, P. Ramaiah, C. S. Lee and G. K. Suryaprakash, Synlett,
1992, 337.
5 H. Q. Li, Z. P. Xiao, Y. Luo, T. Yan, P. C. Lv and H. L. Zhu, Eur.
J. Med. Chem., 2009, 44, 2246.
6 S. Chandrasekhar and K. Gopalaiah, Tetrahedron Lett., 2001,
42, 8123.
7 C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405.
Fig. 2 Primary intermolecular interactions in the crystal structure of 19.
simple aqueous wash. In five cases (5, 6, 8, 11 and 16), the
8 C. B. Aakeroy, M. Fasulo, N. Schultheiss, J. Desper and
¨
C. Moore, J. Am. Chem. Soc., 2007, 129, 13772; J. N. Low,
L. M. N. B. F. Santos, C. F. R. A. C. Lima, P. Brandao and
L. R. Gomes, Eur. J. Chem., 2010, 1, 61.
9 K. F. Konidaris, E. Katsoulakou, M. Kaplanis, V. Bekiari, A. Terzis,
C. P. Raptopoulou, E. Manessi-Zoupa and S. P. Perlepes, Dalton
1
crude H NMR showed an additional set of aromatic peaks
which we ascertained was due to small amount of deproto-
1
nated oxime. Upon washing with water, a perfect H NMR
was again obtained in each case.
Trans., 2010, 39, 4492; P. Chaudhuri, T. Weyhermuller, R. Wagner,
¨
The relative efficiency of this mechanochemical approach is
seemingly not influenced by the presence/absence of electron-
withdrawing or electron-donating groups. Furthermore, the
aldehyde–oxime conversion can also be carried out success-
fully using this grinding procedure even in the presence of
functional groups such as –COOH, –OH, and a heterocycle
(pyridine). Furthermore, the process can be carried out on
multiple aldehydes simultaneously (17–19), as well as on aliphatic
aldehydes (20) with no adverse effects. To further characterize the
product of the reaction between hydroxylamine hydrochloride,
NaOH and the 1,3,5-trisaldehyde, we were able to grow crystals
suitable for single-crystal diffraction, which provided supporting
evidence of the successful conversion (Fig. 2).
S. Khanra, B. Biswas, E. Bothe and E. Bill, Inorg. Chem., 2007,
46, 9003.
10 S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic,
´
F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs,
J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse,
J. W. Steed and D. C. Waddell, Chem. Soc. Rev., 2012, 41, 413;
T. Friscic
11 A. Delori, T. Friscic
14, 2350; T. Friscic, Chem. Soc. Rev., 2012, 41, 3493.
´
, J. Mater. Chem., 2010, 20, 7599.
´
and W. Jones, CrystEngComm, 2012,
´
12 M. Sridhar, C. Narsaiah, J. Raveendra, G. K. Reddy, M. K.
K. Reddy and B. C. Ramanaiah, Tetrahedron Lett., 2011, 52, 4701.
13 G. L. Kad, M. Bhandari, J. Kaur, R. Rathee and J. Singh, Green
Chem., 2001, 3, 275.
14 H. Sharjhi and M. H. Sarvari, J. Chem. Res. (S), 2000, 1, 24.
15 L. Saikia, J. M. Baruah and A. J. Thakur, Org. Med. Chem. Lett.,
2011, 1, 12.
16 J. Mokhtari, M. R. Naimi-Jamal, H. Hamzeali, M. G. Dekamin
and G. Kaupp, ChemSusChem, 2009, 2, 248.
17 C. B. Aakeroy and P. D. Chopade, Org. Lett., 2011, 13, 1.
¨
´ ´ ´ ´ ´
18 I. Damljanovic, M. Vukicevic and R. D. Vukicevic, Monatsh.
Chem., 2006, 137, 301.
An examination of the crystal structure of 19 shows that two of
the three hydrogen-bond donors (the –OH moieties) are engaged
in O–HꢀꢀꢀN interactions with an oxime nitrogen atom (the CQN
moiety) of a neighbouring molecule (O21ꢀꢀꢀN23 2.804(3) A,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 11289–11291 11291