258
N. Tada et al. / Tetrahedron Letters 54 (2013) 256–258
Table 4
Acknowledgments
Effect of 2-tetrahydrofuryl hydroperoxidea
O2, hν (400-W Hg lamp)
This work was supported by Grant-in-Aid for Young Scientists
CaI2 (0.2 equiv)
(B) (No. 24790015) from the Japan Society for the Promotion of Sci-
ence (JSPS). The authors would like to thank Enago (www.enago.jp)
for the English language review.
O
O
O
K2CO3 (0.1 equiv)
O
OH
O
THF, 20 h
4a
6a
Supplementary data
Entry
Change from standard conditions
Yieldb (%)
4a
6a
Supplementary data associated with this article can be found, in
1
2
3
4
5
6c
—
67
0
39
20
9
6
Without CaI2 and K2CO3
In the dark
Under Ar
In the dark, under Ar
H2O2 (1.2 equiv) was added, in the dark
95
55
53
90
72
References and notes
8
1. For a recent review see: (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev.
2005, 105, 2329–2363; (b) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037–
3058; (c) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400–3420; (d) Piera, J.;
Backvall, J.-E. Angew. Chem., Int. Ed. 2008, 47, 3506–3523.
a
Reaction conditions: 4a (0.3 mmol), CaI2 (0.2 equiv), K2CO3 (0.1 equiv), THF
(5 mL: Before using, THF was irradiated with a 400-W high pressure mercury lamp
with O2 balloon for 20 h. This THF include 2-tetrahydrofuryl hydroperoxide
(0.51 mmol) (Table 3, entry 2)), with O2 balloon, and irradiation with a 400-W high
pressure mercury lamp for 20 h.
2. For recent reports, see: (a) Tada, N.; Ban, K.; Nobuta, T.; Hirashima, S.; Miura, T.;
Itoh, A. Synlett 2011, 1381–1384; (b) Tada, N.; Hattori, K.; Nobuta, T.; Miura, T.;
Itoh, A. Green Chem. 2011, 13, 1669–1671; (c) Nobuta, T.; Hirashima, S.; Tada,
N.; Miura, T.; Itoh, A. Org. Lett. 2011, 13, 2576–2579; (d) Tada, N.; Matsusaki, Y.;
Miura, T.; Itoh, A. Chem. Pharm. Bull. 2011, 59, 906–908; (e) Tada, N.; Ban, K.;
Ishigami, T.; Nobuta, T.; Miura, T.; Itoh, A. Tetrahedron Lett. 2011, 52, 3821–
3824; (f) Nobuta, T.; Tada, N.; Hattori, K.; Hirashima, S.; Miura, T.; Itoh, A.
Tetrahedron Lett. 2011, 52, 875–877; (g) Tada, N.; Cui, L.; Okubo, H.; Miura, T.;
Itoh, A. Chem. Commun. 2010, 46, 1772–1774; (h) Tada, N.; Ban, K.; Yoshida, M.;
Hirashima, S.; Miura, T.; Itoh, A. Tetrahedron Lett. 2010, 51, 6098–6100; (i) Tada,
N.; Cui, L.; Okubo, H.; Miura, T.; Itoh, A. Adv. Synth. Catal. 2010, 352, 2383–2386;
(j) Hirashima, S.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. Org. Lett. 2010, 12,
3645–3647; (k) Tada, N.; Ban, K.; Hirashima, S.; Miura, T.; Itoh, A. Org. Biomol.
Chem. 2010, 8, 4701–4704; (l) Kanai, N.; Nakayama, H.; Tada, N.; Itoh, A. Org.
Lett. 2010, 12, 1948–1951; (m) Nobuta, T.; Hirashima, S.; Tada, N.; Miura, T.;
Itoh, A. Tetrahedron Lett. 2010, 51, 4576–4578; (n) Nobuta, T.; Hirashima, S.;
Tada, N.; Miura, T.; Itoh, A. Synlett 2010, 2335–2339; (o) Tada, N.; Shomura, M.;
Nakayama, H.; Miura, T.; Itoh, A. Synlett 2010, 1979–1983.
b
1H NMR yields.
c
THF was used without previous irradiation under an oxygen atmosphere.
O
OOH
7
O2, hν and
CaI2
I2
O
-
I
O
R1
R1
O
I2, K2CO3
O
R1
CO2H
2
O
O
O
I-
4
6
5
3. Yamada, K.; Kato, T.; Hirata, Y. J. Chem. Soc., Chem. Commun. 1969, 1479–1480.
4. Tada, N.; Cui, L.; Ishigami, T.; Ban, K.; Miura, T.; Itoh, A. Green Chem. 2012, 14,
3007–3009.
O
OOH
O2, hν and
5. Igarashi, K.; Mori, Y.; Takeda, K. Steroids 1969, 13, 627–636.
6. Solujic, S.; Sukdolak, S.; Ratkovic, Z. Tetrahedron Lett. 1991, 32, 4577–4578.
7. (a) Moriarty, R. M.; Vaid, R. K.; Hopkins, T. E.; Vaid, B. K.; Prakash, O.
Tetrahedron Lett. 1990, 31, 201–204; (b) Huang, X.; Zhu, Q.; Zhang, J. J. Chem.
Res. (S) 2001, 480–481; (c) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. J. Chin.
Chem. Soc. 2005, 52, 1029–1032; (d) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen,
L.-C. Heterocycles 2005, 65, 649–656.
8. (a) Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848–
3851; (b) Shah, A. A.; Khan, Z. A.; Choudhary, N.; Loholter, C.; Schafer, S.; Marie,
G. P. L.; Farooq, U.; Witulski, B.; Wirth, T. Org. Lett. 2009, 11, 3578–3581; (c)
Farooq, U.; Schafer, S.; Shah, A. A.; Freudendahl, D. M.; Wirth, T. Synthesis 2010,
1023–1029.
9. (a) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50,
5331–5334; (b) Uyanik, M.; Ishihara, K. ChemCatChem 2012, 4, 177–185.
10. Typical procedure: A solution of substrate (0.3 mmol), CaI2 (0.2 equiv), and
K2CO3 (0.1 equiv) in dry THF (5 mL) in a Pyrex test tube with O2 balloon is
stirred and irradiated externally with 400-W high pressure mercury lamp at
room temperature for the indicated time. The temperature of the reaction
mixture at the final stage of this reaction was about 50 °C. The product is
quenched with 0.5 M aq Na2S2O3. Then the solution is acidified with 0.5 M aq
HCl and extracted with EtOAc. The product is purified by PTLC.
Scheme 2. Plausible path.
was obtained in a low yield (entry 6). These results indicate the fol-
lowing reaction mechanism (Scheme 2): (1) Calcium iodide is oxi-
dized to iodine with light and molecular oxygen or 2-
tetrahydrofuryl hydroperoxide (7). (2) The enolate of the oxocarb-
oxylic acid 4 is formed with potassium carbonate, and reacts with
iodine to form iodide 5. (3) Iodide 5 cyclizes to form oxolactone 6
in the presence of potassium carbonate. (4) The reoxidation of the
iodide anion to iodine completes the catalytic cycle, thus enabling
the iodine-catalyzed reaction.
In conclusion, we have developed convenient methods for the
direct synthesis of oxolactones from oxocarboxylic acids catalyzed
by calcium iodide. This method is of great value from a green
chemistry perspective and organic synthesis because of its use of
molecular oxygen as the terminal oxidant.
11. Moreira, R. F.; Tshuva, E. Y.; Lippard, S. J. Inorg. Chem. 2004, 43, 4427–4434.
12. Debiais, L.; Niclause, M.; Letort, M. Compt. Rend. 1954, 239, 539–541.