Journal of the American Chemical Society
Page 8 of 10
Municipality (15XD1501400), and Shanghai Scientific and
Technological Innovation Project (14520720700).
CONCLUSIONS
1
2
3
4
5
6
7
8
9
In summary, we have developed a BODIPYꢀbased platform
for the construction of selective and fast responsive H2S
probes. The designed small molecular probe, BODInD-Cl,
showed fascinating feature with a rapid redꢀshift in the
absorption from 540 to 738 nm upon interaction with H2S.
Although the fluorescence turnꢀoff nature renders this probe
less sensitive in detection of endogenous H2S generation
within living cells, the remarkable redꢀshift in the absorption
makes this probe promising for construction of FRETꢀbased
probes. Selfꢀassembling micelles of amphiphilic polymers can
capture multiple chromophores within the same interior of the
macromolecular envelope, imposing the trapped chromophores
in close proximity. By encapsulating BODInD-Cl and its
complementary donor BODIPY1 in the hydrophobic part of
mPEGꢀDSPE, a FRETꢀswitchable nanoprobe for fast and
selective response to H2S was established with features of
aqueous solubility and biocompatibility. Both the interior
REFERENCES
1. Yang, G. D.; Wu, L. Y.; Jiang, B.; Yang, W.; Qi, J. S.; Cao, K.;
Meng, Q. H.; Mustafa, A. K.; Mu, W. T.; Zhang, S. M.; Snyder, S. H.;
Wang, R. Science 2008, 322, 587.
2. Lefer, D. J. Proc. Natl. Acad. Sci. USA 2007, 104, 17907.
3. Blackstone, E.; Morrison, M.; Roth, M. B. Science 2005, 308,
518.
4. Zanardo, R. C.; Brancaleone, V.; Distrutti, E.; Fiorucci, S.;
Cirino, G.; Wallace, J. L. FASEB J. 2006, 20, 2118.
5. Kabil, O.; Banerjee, R. J. Biol. Chem. 2010, 285, 21903.
6. Singh, S.; Padovani, D.; Leslie, R. A.; Chiku, T.; Banerjee, R. J.
Biol. Chem. 2009, 284, 22457.
7. Chiku, T. J. Biol. Chem. 2009, 284, 11601.
8. Shibuya, N.; Mikami, Y.; Kimura, Y.; Nagahara, N.; Kimura, H.
J. Biochem. 2009, 146, 623.
9. Abe, K.; Kimura, H. J. Neurosci. 1996, 16, 1066.
10. Kamoun, P. Amino Acids 2004, 26, 243.
11. Eto, K.; Asada, T.; Arima, K.; Makifuchi, T.; Kimura, H.
Biochem. Biophys. Res. Commun. 2002, 293, 1485.
12. Kamoun, P.; Belardinelli, M.ꢀC.; Chabli, A.; Lallouchi, K.;
ChadefauxꢀVekemans, B. Am. J. Med. Genet. 2003, 116A, 310.
13. Lee, M.; Schwab, C.; Yu, S.; McGeer, E.; McGeer, P. L.
Neurobiol. Aging 2009, 30, 1523.
14. Lin, V. S.; Chang, C. J. Curr. Opin. Chem. Biol. 2012, 16, 595.
15. Xuan, W.; Sheng, C.; Cao, Y.; He, W.; Wang, W. Angew.
Chem., Int. Ed. 2012, 51, 2282.
16. Cao, X.; Lin, W.; Zheng, K.; He, L. Chem. Commun. 2012, 48,
10529.
17. Yu, F.; Han, X.; Chen, L. Chem. Commun. 2014, 50, 12234.
18. Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chem. Soc. Rev.
2015, DOI: 10.1039/c4cs00298a.
19. Liu, J.; Sun, Y.ꢀQ.; Zhang, J.; Yang, T.; Cao, J.; Zhang; L.; Guo,
W. Chem. – Eur. J. 2013, 19, 4717.
20. Zhou, X.; Lee, S.; Xu, Z.; Yoon, J. Chem. Rev. 2015, DOI:
10.1021/cr500567r.
21. Lippert, A. R.; New, E. J.; Chang, C. J. J. Am. Chem. Soc. 2011,
133, 10078.
22. Peng, H.; Cheng, Y.; Dai, C.; King, A. L.; Predmore, B. L.;
Lefer, D. J.; Wang, B. Angew. Chem., Int. Ed. 2011, 50, 9672.
23. Chen, S.; Chen, Z.; Ren, W.; Ai, H.ꢀW. J. Am. Chem. Soc. 2012,
134, 9589.
24. Montoya, L. A.; Pluth, M. D. Chem. Commun. 2012, 48, 4767.
25. Lina, V. S.; Lipperta, A. R.; Chang, C. J. Proc. Natl. Acad. Sci.
USA, 2013, 110, 7131.
26. Bae, S. K.; Heo, C. H.; Choi, D. J.; Sen, D.; Joe, E.ꢀH.; Cho, B.
R.; Kim, H. M. J. Am. Chem. Soc. 2013, 135, 9915.
27. Wan, Q.; Song, Y.; Li, Z.; Gao, X.; Ma, H. Chem. Commun.
2013, 49, 502.
28. Yu, F.; Li, P.; Song, P.; Wang, B.; Zhao, J.; Han, K. Chem.
Commun. 2012, 48, 2852.
29. Das, S. K.; Lim, C. S.; Yang, S. Y.; Han, J. H.; Cho, B. R.
Chem. Commun 2012, 48, 8395.
30. Li, X.; Yang, C.; Wu, K.; Hu, Y.; Han, Y.; Liang, S. H.
Theranostics 2014, 4, 1233.
31. Shi, D.ꢀT.; Zhou, D.; Zang, Y.; Li, J.; Chen, G.ꢀR.; James, T. D.;
He, X.ꢀP.; Tian, H. Chem. Commun. 2015, 51, 3653.
32. Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Chem. Commun.
2013, 49, 403.
33. Wang, R.; Yu, F.; Chen, L.; Chen, H.; Wang, L.; Zhang, W.
Chem. Commun. 2012, 48, 11757.
34. Zhang, J.; Guo, W. Chem. Commun. 2014, 50, 4214.
35. Bailey, T. S.; Pluth, M. D. J. Am. Chem. Soc. 2013, 135, 16697.
36. Zhang, L.; Meng, W. G.; Lu, L.; Xue, Y. S.; Li, C.; Zou, F.; Liu,
Y.; Zhao, J. Sci. Rep. 2014, 29, 5870.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
hydrophobicity
of
supramolecular
micelles
and
electronꢀwithdrawing nature of indolium unit in BODInD-Cl
can sharply increase aromatic nucleophilic substitution with
H2S, thus enabling H2S to be rapidly and accurately tracked via
a ratiometric method. Moreover, this supramolecular envelope
holds promising potential in cell imaging due to several
advantages such as favorable cellular uptake, aqueous
solubility, biocompatibility and ratiometric measurement,
which has been successfully exploited for in situ trapping of
endogenous H2S generation within raw264.7 macrophages
upon stimulation with fluvastatin. Based on the unique
responsive energy acceptor of BODInD-Cl, we provide a clear
clue to increasing the H2Sꢀresponse rate, building up
preferable ratiometric fluorescent sensors based on the
unfavored fluorescence turnꢀoff chromophore, and making full
use of the amphiphilic assembled micelles to guarantee
biocompatibility and aqueous solubility. The novel
nanoprobeꢀbased platform for H2S could be further constructed
by simply employing versatile energy donors.
ASSOCIATED CONTENT
Supporting Information. Detailed characterization data,
experimental procedures including preparation of NanoBODIPY
and cell imaging, supplementary figures. This material is available
AUTHOR INFORMATION
Corresponding Author
*Eꢀmail: whzhu@ecust.edu.cn.
*Eꢀmail: zhaocchang@ecust.edu.cn.
*Eꢀmail: ship@ecust.edu.cn.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We gratefully acknowledge the financial support by National 973
Program (No. 2013CB733700), NSFC for Creative Research
Groups (21421004) and Distinguished Young Scholars
(21325625), NSFC/China, the Oriental Scholarship, the
Fundamental Research Funds for the Central Universities
(WJ1416005), Science and Technology Commission of Shanghai
37. Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.;
Whorton, A. R.; Xian, M. Angew. Chem., Int. Ed. 2011, 50, 10327.
8
ACS Paragon Plus Environment