synthesis of benzoquinoxalinobarrelene and naphthalene
derivatives. Interestingly, 1,2-benzoquinones manifest car-
bodiene-type reactivity in the DielsꢀAlder reactions with
arynes.
dienes. Recently, many of the traditional aryne reactions
have been revisited using Kobayashi’s method for aryne
generation, that is, by the treatment of 2-(trimethylsilyl)-
aryl triflates with a fluoride source, and this protocol has
led to a general enhancement in yields.7,10 We have recently
developed an efficient and practical DielsꢀAlder reaction of
pentafulvenes with arynes leading to the formation of benzo-
norbornadiene derivatives in high yields and broad scope.11
In the context of our interest in the chemistry of arynes,
the present study was initiated with the treatment of
3,5-di-tert-butyl 1,2-benzoquinone 1a with the aryne gene-
rated in situ from 2-(trimethylsilyl)aryl triflate 2a using
2.0 equiv each of KF and 18-crown-6. Interestingly, the
reaction afforded the 1,3-di-tert-butyl-1,4-dihydro-1,4-ethano
naphthalene-9,10-dione 3a in 94% yield (based on 1H NMR
spectroscopy, Table 1, entry 1). Other fluoride sources, such
as CsF, furnished comparable results (entry 2), but the use of
tetrabutylammonium fluoride (TBAF) was not found to be
helpful (entry 3). Increasing the amount of 1a improved the
yield of 3a (entry 4). Finally, increasing the amount of aryne
precursor 2a to 1.2 equiv and employing 2.4 equiv each of KF
and 18-crown-6 improved the reactivity, with 3a isolated in
98% yield (entry 5).12,13
Scheme 1. DielsꢀAlder Reaction of 1,2-Benzoquinones
Arynes are highly reactive intermediates, which holds
potential for numerous applications in organic synthesis
for the construction of multisubstituted arenes of structur-
al diversity and intricacy.8 One of the important reactions
of arynes is the DielsꢀAlder reaction, which is a powerful
tool for constructing various carbocycles and heterocycles
ofsynthetic importance.9 Due totheir highelectrophilicity,
arynes have been shown to react with a wide variety of
Table 1. Optimization of the Reaction Conditionsa
(8) For reviews, see: (a) Tadross, P. M.; Stoltz, B. M. Chem. Rev.
2012, 112, 3550. (b) Gampe, C. M.; Carreira, E. M. Angew. Chem., Int.
Ed. 2012, 51, 3766. (c) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc.
Rev. 2012, 41, 3140. (d) Okuma, K. Heterocycles 2012, 85, 515. (e) Chen,
Y. Larock, R. C. In Modern Arylation Methods; Ackermann, L., Ed.;
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; p 401.
(f) Sanz, R. Org. Prep. Proced. Int. 2008, 40, 215. (g) Yoshida, H.;
Ohshita, J.; Kunai, A. Bull. Chem. Soc. Jpn. 2010, 83, 199. (h) Wenk,
H. H.; Winkler, M.; Sander, W. Angew. Chem., Int. Ed. 2003, 42, 502.
(i) Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701. (j) Kessar, S. V.
In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press: New York, 1991; Vol. 4, p 483. For highlights, see: (k)
Bhojgude, S. S.; Biju, A. T. Angew. Chem., Int. Ed. 2012, 51, 1520. (l)
yield of
entry
variation from the standard conditionsa
none
3a (%)b
1
2
94
91
CsF instead of KFand 18-crown-6, CH3CN as
the solvent
3 c
4
5 d
TBAF instead of KF and 18-crown-6
1.2 equiv of 1a instead of 1.0 equiv
1.2 equiv of 2a instead of 1.0 equiv, 2.4 equiv
each of KF and 18-crown-6
<5
97
>99 (98)
~
ꢀ
ꢀ
Pena, D.; Perez, D.; Guitian, E. Angew. Chem., Int. Ed. 2006, 45, 3579.
For a recent account, see: (m) Yoshida, H.; Takaki, K. Synlett 2012, 23,
1725.
a Standard conditions: 1a (0.25mmol), 2a (0.25 mmol), KF (2.0 equiv),
18-crown-6 (2.0 equiv), THF (1.0 mL), 0 °C to rt and 12 h. b Yields were
determined by 1H NMR analysis of crude products using CH2Br2 as the
internal standard. Isolated yield at 0.50 mmol scale in parentheses.
c Decomposition of 1a was observed. d Reaction mixture stirred at rt
for 2 h.
(9) For selected recent reports, see: (a) Xie, C.; Zhang, Y. Org. Lett.
2007, 9, 781. (b) Shou, W.-G.; Yang, Y.-Y.; Wang, Y.-G. J. Org. Chem.
~
ꢀ
2006, 71, 9241. (c) Criado, A.; Pena, D.; Cobas, A.; Guitian, E. Chem.;
Eur. J. 2010, 16, 9736. (d) Buszek, K. R.; Luo, D.; Kondrashov, M.;
Brown, N.; VanderVelde, D. Org. Lett. 2007, 9, 4135. (e) Ikawa, T.;
Takagi, A.; Kurita, Y.; Saito, K.; Azechi, K.; Egi, M.; Kakiguchi, K.;
Kita, Y.; Akai, S. Angew. Chem., Int. Ed. 2010, 49, 5563. (f) Dockendroff,
C.; Sahil, S.; Olsen, M.; Milhau, L.; Lautens, M. J. Am. Chem. Soc. 2005,
127, 15028. (g) Li, J.; Wang, N.; Li, C.; Jia, X. Org. Lett. 2012, 14, 4994. (h)
Im, G.-Y.; Bronner, S. M.; Goetz, A. E.; Paton, R. S.; Cheong, P. H.-Y.;
Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010, 132, 17933.
With these optimized reaction conditions in hand, we
then examined the substrate scope of this 1,2-benzoquinone
aryne DielsꢀAlder reaction (Scheme 2).14 The 3,5-di-tert-
butyl 1,2-benzoquinone 1a worked well, and disubstitution
(10) For selected recent reports, see: (a) Rodrıguez-Lojo, D.; Cobas,
~
ꢀ
ꢀ
A.; Pena, D.; Perez, D.; Guitian, E. Org. Lett. 2012, 14, 1363. (b) Fang,
Y.; Rogness, D. C.; Larock, R. C.; Shi, F. J. Org. Chem. 2012, 77, 6262.
(c) Li, P.; Wu, C.; Zhao, J.; Rogness, D. C.; Shi, F. J. Org. Chem. 2012,
77, 3149. (d) Rogness, D. C.; Markina, N. A.; Waldo, J. P.; Larock, R. C.
J. Org. Chem. 2012, 77, 2743. (e) Lu, C.; Dubrovskiy, A. V.; Larock,
R. C. J. Org. Chem. 2012, 77, 2279. (f) Kim, J. M.; Stoltz, B. M.
Tetrahedron Lett. 2012, 53, 4994. (g) Pirali, T.; Zhang, F.; Miller,
A. H.; Head, J. L.; McAusland, D.; Greaney, M. F. Angew. Chem.,
Int. Ed. 2012, 51, 1006. (h) Markina, N. A.; Dubrovskiy, A. V.; Larock,
R. C. Org. Biomol. Chem. 2012, 10, 2409. (i) Zhao, J.; Li, P.; Wu, C.;
Chen, H.; Ai, W.; Sun, R.; Ren, H.; Larock, R. C.; Shi, F. Org. Biomol.
Chem. 2012, 10, 1922.
(11) Bhojgude, S. S.; Kaicharla, T.; Bhunia, A.; Biju, A. T. Org. Lett.
2012, 14, 4098.
(12) For details, see the Supporting Information.
(13) The same yield was obtained from a 2.0 mmol scale reaction.
(14) The 1,2-benzoquinones were synthesized by the FriedelꢀCrafts
alkylation of catechol derivative followed by the oxidation using NaIO4.
For details, see ref 3b.
B
Org. Lett., Vol. XX, No. XX, XXXX