S.-L. Chen et al. / Journal of Molecular Structure 1032 (2013) 246–253
253
6-31+G(d) and HF/6-31Gꢁ methods match well with the X-ray dif-
fraction data. Considering DFT calculations, it can be said that the
experimentally observed excitation energy at 344 nm correspond
to HOMOꢂ1 ? LUMO transitions, and fluorescence emission at
409 nm from HOMO to LUMO transitions. Experimental electronic
absorption bands at 321 nm are assigned as n–pꢁ transition from
HOMOꢂ1?LUMO of the C@N group. Correspondingly, the wiberg
bond index was performed, the calculation results are good agreed
with experimental data. Molecular electrostatic potential (MEP),
where the negative potential located on O1, O2, O5 and N1 atoms
highlights its behavior as a strong proton acceptor regions. The
lowering of the HOMO–LUMO energy gap value has substantial
influence on the intramolecular charge transfer, coordination abil-
ity and bioactivity of the molecule. Furthermore, the electrochem-
ical studies reveal that redox reaction of the title compound is very
difficult in N, N-dimethyl formamide solution.
[10] Ç. Albayrak, B. Kosßar, S. Demir, M. Odabasoglu, O. Buyukgungor, J. Mol. Struct.
963 (2010) 211.
[11] Ç. Albayrak, R. Frank, J. Mol. Struct. 984 (2010) 214.
[12] M.N. Xanthopoulou, S.K. Hadjikakou, N. Hadjiladis, Eur. J. Med. Chem. 43
(2008) 327.
[13] W. Rehman, A. Badshah, M.K. Baloch, Eur. J. Med. Chem. 43 (2008) 2380.
[14] F.D. Proft, P. Geerlings, Chem. Rev. 101 (2001) 1451.
[15] D.W. Emmons, Organic Synthesis, John Wiley and Sons Inc., New York, 1966.
vol. 46.
[16] G.M. Sheldrick, Acta Cryst. A 46 (1990) 467.
[17] G.M. Sheldrick, SHELXL-97™ Program for Crystal Structure Refinement,
University of Göttingen, Germany, 1997.
[18] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[19] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
[20] J.S. Murray, T. Brinck, M.E. Grice, P. Politzer, J. Mol. Struct.: Theochem 256
(1992) 29.
[21] F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, J. Chem.
Soc. Perkin Trans. 2 (1987) S1.
[22] J. Casanovas, A.M. Namba, S. León, G.L.B. Aquino, J. Org. Chem. 66 (2001) 3775.
[23] J.P. Jasinski, R.J. Butcher, M.T. Swamy, B. Narayana, B.K. Sarojini, H.S.
Yathirajan, J. Chem. Crystallogr. 40 (2010) 25.
[24] S. Demir, M. Dincer, E. Korkusuz, Í. Yıldırım, J. Mol. Struct. 980 (2010) 1.
[25] A. Ghosh, A. Sarkar, P. Mitra, et al., J. Mol. Struct. 980 (2010) 7.
[26] R. Gup, B. Kırkan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 64 (2006)
809.
[27] S. Naskar, S. Naskar, R.J. Butcher, S.K. Chattopadhyay, Inorg. Chim. Acta 363
(2010) 404.
Acknowledgements
This work was supported by the Key Laboratory of Environmen-
tal Engineering, Protection and Assessment of Guangxi, the
National Water Pollution Control and Management of China (No.
2008ZX07317-02) and Guangxi Natural Science Foundation (No.
2012GXNSFAA053034).
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
[28] H. Tanak, Y. Köysal, Y. Ünver, M. Yavuz, Sß. Ißsık, K. Sancak, Struct. Chem. 20
(2009) 409.
References
[29] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London,
1976.
[1] V. Alexander, Chem. Rev. 95 (1995) 273.
[2] M.A. Affan, B.A. Fasihuddin, Y.Z. Liew, S.W. Foo, J. Ismail, J. Sci. Res. 1 (2009)
306.
[30] F. Kandemirli, S. Sagdinc, Corros. Sci. 49 (2007) 2118.
[31] J. Fang, J. Li, J. Mol. Struct.: Theochem 593 (2002) 179.
[32] H. Luo, Y.C. Guan, K.N. Han, Corrosion 54 (1998) 721.
[33] M. Behpour, S.M. Ghoreishi, N. Mohammadi, N. Soltani, M. Salavati-Niasari,
Corros. Sci. 52 (2010) 4046.
[34] N.A. Ogorodnikova, J. Mol. Struct.: Theochem 894 (2009) 41.
[35] F.J. Luque, J.M. López, M. Orozco, Theor. Chem. Acc. 103 (2000) 343.
[36] N. Okulik, A.H. Jubert, Internet Electron. J. Mol. Des. 4 (2005) 17.
[37] G. Gece, Corros. Sci. 50 (2008) 2981.
[3] R. Dinda, P. Sengupta, S. Ghash, T.C.W. Mak, Inorg. Chem. 41 (2002) 1684.
[4] A. Sreekanth, U.L. Kala, C.R. Nayar, M.R.P. Kurup, Polyhedron 23 (2004) 41.
[5] N. Tezer, N. Karakus, J. Mol. Model. 15 (2009) 223.
[6] P.B. Sreeja, M.R.P. Kurup, A. Kishore, C. Jasmin, Polyhedron 23 (2004) 575.
[7] W.P. Jia, J.G. Yang, F. Li, F.Y. Pan, J. Inorg. Chem. 24 (2008) 627.
[8] J.G. Yang, F.Y. Pan, W.P. Jia, F. Li, J. Inorg. Chem. 25 (2009) 2207.
[9] X.Q. Shen, Z.J. Li, H.Y. Zhang, Y.F. Zhou, K. Liu, Q.A. Wu, E. Wang, Thermochim.
Acta 428 (2005) 77.