1632
A. Hietanen et al. / Tetrahedron: Asymmetry 23 (2012) 1629–1632
determined with a PerkinElmer 241 or 341 polarimeter, and [
a
]
ing to room temperature, the reaction was treated with aq NH4OH
(24.5%, 6 mL) and the basic solution was extracted with EtOAc
(3 ꢂ 10 mL). The organic phases were combined, dried over NaSO4,
and concentrated to yield (R)-1 (16 mg, 0.109 mmol, 78%,
D
values are given in units of 10ꢀ1 deg cm2 gꢀ1. Flash chromatogra-
phy was performed using silica gel 60 Å (Merck, 230–400 mesh,
enriched with 0.1% Ca).
Small-scale kinetic resolutions were performed in vials with
approximately 1 mL of reaction volume. Agitation, both on the
small and preparative scale, was carried out by shaking. The deter-
mination of E is based on equation E = ln[(1-c)(1-eeS)]/ln[(1-
c)(1+eeS)] with c = eeS/(eeS+eeP) using linear regression where E
is the slope of the line ln[(1-c)(1-eeS)] versus ln[(1-c)(1+eeS)].1
ee = 85%). (R)-1: ½a D25
¼ þ38 (c 0.5, CHCl3). NMR spectra were in
ꢁ
accordance with those reported in the literature.7
Acknowledgements
The authors thank the Academy of Finland for financial support
(research grants #121983 for L.K. and #121334 for RL/Fusing Bio-
catalytic and Chemocatalyzed Reaction Technologies).
3.2. Kinetic resolution of rac-1
One of the acyl donors (0.2 M or 1 mL) was added into a reac-
tion vial containing molecular sieves (4 Å, 50 mg) and the enzyme
(50–100 mg mLꢀ1), toluene (1 mL) when used and rac-1 (0.1 M)
were added. The reaction mixture was shaken (170 rpm) at a given
temperature. Reactions were followed by HPLC equipped with a
Daicel CHIRALCEL OD-H analytical column (40 °C) which was
eluted with 10% iPrOH in hexane (0.8 mL minꢀ1) and detected with
a UV detector at 235 nm. HPLC samples were derivatized either
with acetic or butanoic anhydride.
References
1. Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104,
7294–7299.
2. Skupinska, K. A.; McEachern, E. J.; Baird, I. R.; Skerlj, R. T.; Bridger, G. J. J. Org.
Chem. 2003, 68, 3546–3551.
3. Iglesia, L. E.; Sánchez, V. M.; Rebolledo, F.; Gotor, V. Tetrahedron: Asymmetry
1997, 8, 2675–2677.
4. Päiviö, M.; Perkiö, P.; Kanerva, L. T. Tetrahedron: Asymmetry 2012, 23, 230–236.
5. Rodríguez-Mata, M.; Gotor-Fernández, V.; González-Sabín, J.; Rebolledo, F.;
Gotor, V. Org. Biomol. Chem. 2011, 9, 2274–2278.
6. Hietanen, A.; Saloranta, T.; Rosenberg, S.; Laitinen, E.; Leino, R.; Kanerva, L. T.
Eur. J. Org. Chem. 2010, 909–919.
3.3. Preparative-scale kinetic resolution of rac-1
7. Saloranta, T.; Leino, R. Tetrahedron Lett. 2011, 52, 4619–4621.
8. Busto, E.; Gotor-Fernández, V.; Gotor, V. Chem. Rev. 2011, 111, 3998–4035.
9. Liljeblad, A.; Kanerva, L. T. Tetrahedron 2006, 62, 5831–5854.
10. Höhne, M.; Bornscheuer, U. T. Chem. Cat. Chem. 2009, 1, 42–51.
11. Turner, N. J. Curr. Opin. Chem. Biol. 2010, 14, 115–121.
12. Lee, J. H.; Han, K.; Kim, M.-J.; Park, J. Eur. J. Org. Chem. 2010, 999–1015.
13. Liljeblad, A.; Kiviniemi, A.; Kanerva, L. T. Tetrahedron 2004, 60, 671–677.
14. Hietanen, A.; Lundell, K.; Kanerva, L. T.; Liljeblad, L. Arkivoc 2012, V, 60–74.
15. Gotor-Fernández, V.; Fernández-Torres, P.; Gotor, V. Tetrahedron: Asymmetry
2006, 17, 2558–2564.
16. Syrén, P.-O.; Hult, K. Chem. Cat. Chem. 2011, 3, 853–860.
17. Liljeblad, A.; Kallio, P.; Vainio, M.; Niemi, J.; Kanerva, L. T. Org. Biomol. Chem.
2010, 8, 886–895.
18. Smidt, H.; Fischer, A.; Fischer, P.; Schmid, R. D. Biotechnol. Tech. 1996, 10, 335–
338.
Compound rac-1 (113 mg, 0.764 mmol) was dissolved in i-PrO-
Ac (7.65 mL) and the solution was added to lipase PS-D (765 mg,
100 mg mLꢀ1) and 4 Å molecular sieves (770 mg). After 96 h of
shaking at +22 °C (47% conversion), the reaction was filtered and
the enzyme and molecular sieves were washed with i-PrOAc. The
organic phases were combined, concentrated and purified by col-
umn chromatography (5% Et3N in EtOAc) to give (R)-2 [64 mg,
0.337 mmol, 44%, ee = 97%, purity 94%, ½a D25
¼ þ82 (c 1.0, CHCl3)]
ꢁ
and (S)-1 (44 mg, 0.297 mmol, 39%, ee = 88%, ½a D25
ꢁ
¼ ꢀ39 (c 0.5,
CHCl3). (R)-2: 1H NMR (600.13 MHz, CDCl3, 25 °C): d = 8.76 (s, 1H,
19. Wagegg, T.; Enzelberger, M. M.; Bornscheuer, U. T.; Schimd, R. D. J. Biotechnol.
1998, 61, 75–78.
HAr2); 8.52 (d, JAr6–Ar5 = 3.0 Hz, 1H, HAr6); 7.75 (d, JAr4–Ar5 = 8.40 Hz,
1H, H ); 7.38 (dd, 1H, HAr5); 6.27 (d, JNH–CH = 6.60 Hz, 1H, NH);
5.68 (Amr4 , 1H, CH@); 5.16 (m, 1H, CH); 5.13 (m, 2H, @CH2); 2.61
(m, 2H, –CH2–); 2.03 (s, 3H, COCH3) ppm; HRMS: calcd for
20. Duarte, D. R.; Castillo, E. L.; Bárzana, E.; López-Munguía, A. Biotechnol. Lett.
2000, 22, 1811–1814.
21. Sergeeva, M. V.; Mozhaev, V. V.; Rich, J. O.; Khmelnitsky, Y. L. Biotechnol. Lett.
2000, 22, 1419–1422.
22. Torres-Gavilán, A.; Escalante, J.; Regla, I.; López-Munguía, A.; Castillo, E.
Tetrahedron: Asymmetry 2007, 18, 2621–2624.
23. Ismail, H.; Lau, R. M.; van Rantwijk, F.; Sheldon, R. A. Adv. Synth. Catal. 2008,
350, 1511–1516.
C
11H14N2ONa+ [M+Na]+ 213.0998, found 213.1071. (S)-1: NMR
spectra for (S)-1 were in accordance with those reported in the
literature.7
24. Brem, J.; Bencze, L.-C.; Liljeblad, A.; Turcu, M. C.; Paizs, C.; Irimie, F.-D.;
Kanerva, L. T. Eur. J. Org. Chem. 2012, 3288–3294.
3.4. Hydrolysis of (R)-2 to give (R)-1
(R)-2 (26 mg, 0.138 mmol, ee 88%) was stirred in 2 M aq HCl
(2.6 mL) under microwave heating at 165 °C for 15 min. After cool-