L. Huang et al. / Dyes and Pigments 96 (2013) 770e773
773
(c) de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP,
Rademacher JT. Signaling recognition events with fluorescent sensors and
switches. Chem Rev 1997;97:1515e66;
(d) Guo ZQ, Zhu WH, Tian H. Hydrophilic copolymer bearing dicyanomethylene-
4H-pyran Moiety as fluorescent film sensor for Cu2þ and pyrophosphate anion
macromolecules. Macromolecules 2010;43:739e44;
(e) Guo ZQ, Zhu WH, Shen LJ, Tian H. A fluorophore capable of crossword puzzles
and logic memory. Angew Chem Int Ed 2007;46:5549e53;
(f) Xi PX, Huang L, Liu H, Jia PF, Chen FJ, Xu M, et al. Dual-rhodamine urea derivative,
a novel chemidosimeter for Hg(II) and its application in imaging Hg(II) in living
cells. J Biol Inorg Chem 2009;14:815e9;
(g) Wu DY, Huang W, Duan CY, Lin ZH, Meng QJ. Highly sensitive fluorescent probe
for selective detection of Hg2þ in DMF aqueous media. Inorg Chem 2007;46:
1538e40.
[2] (a) Das P, Ghosh A, Das A. Unusual specificity of a receptor for Nd3t among
other lanthanide ions for selective colorimetric recognition. Inorg Chem 2010;
49:6909e16;
(b) van der Tol EB, van Ramesdonk HJ, Verhoeven JW, Steemers FJ, Kerver EG,
Verboom W, et al. Tetraazatriphenylenes as extremely efficient antenna chro-
mophores for luminescent lanthanide ions. Chem Eur J 1998;4:2315e23;
(c) Ghosh P, Bharadwaj PK, Roy J, Ghosh S. Transition metal (II)/(III), Eu(III), and
Tb(III) ions induced molecular photonic OR gates using trianthryl cryptands of
varying cavity dimension. J Am Chem Soc 1997;119:11903e9;
(d) Lisowski CE, Hutchison JE. Malonamide-functionalized gold nanoparticles
for selective, colorimetric sensing of trivalent lanthanide ions. Anal Chem 2009;
81:10246e53.
Fig. 4. Fluorescence intensities of 10
CH3CN/water (1:1, v/v) solution. Gray bars represent the fluorescence response of L1 to
the metal ion of interest (400 m). Black bars represent the addition of CAN (400 m)
to the foregoing solution. (lex ¼ 500 nm).
mm L1 upon the addition of various metal ions in
m
m
[3] (a) Zhang H, Feng J, Zhu WF, Liu CQ, Xu SQ, Shao PP, et al. Chronic toxicity of
rare-earth elements on human beings: implications of blood biochemical
indices in REE-high regions. Biol Trace Elem Res 2000;73:1e17;
(b) Salas M, Tuchweber B, Kovacs K, Garg BD. Effect of cerium on the rat liver:
an ultrastructural and biochemical study. Beitr Pathol 1976;157:23e44;
(c) Nakamura Y, Tsumura Y, Tonogai Y, Shibata T, Ito Y. Differences in behavior
among the chlorides of seven rare earth elements administered intravenously
to rats. Fundam Appl Toxicol 1997;37:106e16;
with Ce4þ was completed in less than 5 min. Therefore, chemo-
dosimeter L1 was a sensitive sensor and could be used in the real-
time determination of Ce4þ in environmental analysis (Fig. S4).
4. Summary
(d) Liu JS, Shen ZG, Yang WD, Chen J, Xie LM, Lei HY. Effect of long-term intake
of rare earth in drinking water on trace elements in brains of mice. J Rare Earth
2002;20:562;
(e) Xia WS, Schmehl RH, Li CJ. A fluorescent 18-Crown-6 based luminescence
sensor for lanthanide ions. Tetrahedron 2000;56:7045e9;
In summary, a fluorescence sensing system for Ce4þ has been
developed for the first time based on a metal-catalyzed oxidative
reaction. The rhodamine-derived probe undergoes an oxidative
cyclization and a concomitant oxidative ring opening upon reaction
with the CAN, resulting in both colour and fluorescence evolution.
In addition, the new fluorescent sensor showed an excellent
selectivity for Ce4þ over other rare earth ions examined in CH3CN/
water (1:1, v/v) solution. This work provides a basis for the devel-
opment of an efficient fluorescent sensing system for Ce4þ in the
aqueous solution.
(f) Mukkala VM, Helenius M, Hemmila I, Kankare J, Takalo H. Development of
luminescent europium-(III) and terbium(III) chelates of 2,2,60,20-terpyridine
derivatives for protein labelling. Helv Chim Acta 1992;76:1361e78;
(g) Mwiatkowski M, Samiotaki M, Lamminmaki U, Mukkala VM, Landegren U.
Solid-phase synthesis of chelate-labelled oligonucleotides: application in
triple-color ligase-mediated gene analysis. Nucleic Acids Res 1994;22:2604e11;
(h) Werts MHV, Woundenberg RH, Emmerink PG, van Gassel R, Hofstraat JW,
Verhoeven JW. A near-infrared luminescent label based on Yb(III) ions and its
application in a fluoroimmunoassay. Angew Chem Int Ed 2000;39:4542e4;
(i) Kirsch SF, Liebert C. Neodymium(III)-mediated Reformatsky-type reactions
of halo ketones with carbonyl compounds. Eur J Org Chem 2007:3711e7.
[4] (a) Ni JZ. Bioinorganic chemistry of rare earth elements. 2001; 5;
(b) Nie LH, Ma HM, Sun M, Li XH, Su MH, Liang SC. Direct chemiluminescence
determination of cysteine in human serum using quinine-Ce(IV) system.
Talanta 2003;59:959e64;
Acknowledgments
This work was supported by the National Natural Scientific
Foundation of China (No. 21201092), the Fundamental Research
Funds for the Central Universities (Lzujbky-2012-65) and (Lzujbky-
2012-203).
(c) Wang SJ, Ma HM, Li J, Chen XQ, Bao Z, Sun SN. Direct determination of
reduced glutathione in biological fluids by Ce(IV)equinine chemiluminescence.
Talanta 2006;70:518e21.
[5] Dabiri M, Salehi P, Baghbanzadeha M, Bahramnejada M. A facile procedure for
the one-pot synthesis of unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles.
Tetrahedron Lett 2006;47:6983e6.
[6] (a) Xiang Y, Tong AJ, Jin PY, Ju Y. New fluorescent rhodamine hydrazone chemo-
sensor for Cu(II) with high selectivity and sensitivity. Org Lett 2006;8:2863e6;
(b) Huang L, Chen FJ, Xi PX, Xie GQ, Li ZP, Shi YJ, et al. A turn-on fluorescent che-
mosensor for Cu2t in aqueous media and its application to bioimaging. Dyes
Pigments 2011;90:265e8;
Appendix A. Supplementary material
Supplementary data related to this article can be found online at
(c) Hu ZQ, Lin CS, Wang XM, Ding L, Cui CL, Liu SF, et al. Highly sensitive and
selective turn-on fluorescent chemosensor for Pb2þ and Hg2þ based on a rhoda-
mineephenylurea conjugate. Chem Commun 2010;46:3765e7;
(d) Du JJ, Fan JL, Peng XJ, Sun PP, Wang JY, Li HL, et al. A new fluorescent chemo-
dosimeter for Hg2þ: selectivity, sensitivity, and resistance to Cys and GSH. Org Lett
2010;12:476e9.
References
[1] (a) Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their
chemistry and biology with molecular imaging. Chem Rev 2008;108:1517e49;
(b) DTuan Quang, Kim JS. Fluoro- and chromogenic chemodosimeters for heavy
metal ion detection in solution and biospecimens. Chem Rev 2010;110:6280e301;
[7] Evans DA, Nagorny P, Xu R. Org Lett 2006;8:5669e71.