P. Radha Krishna et al. / Tetrahedron Letters 54 (2013) 669–671
671
acetonide 13.6 For instance, the 13C NMR of 13 revealed the carbon
atoms due to the acetonide methyls that appeared at d 19.7 and at
d 31.8 ppm characteristic of the acetonide of a syn-1,3-diol moiety.
Thus the relative stereochemistry of the newly created stereogenic
center was unequivocally assigned as syn to the existing one and
its absolute stereochemistry as ‘S’. Then the PMB group of com-
pound 13 was deprotected under standard DDQ oxidation condi-
tions (DDQ/CH2Cl2/H2O/0 °C to rt/0.5 h) to result in alcohol 5 (86%).
Finally, the primary alcohol was oxidized to its carboxylic acid
under TEMPO/BAIB conditions. Fortunately the acidic (2 N HCl)
work-up, normally adopted after the oxidation step, helped us real-
ize the target compound nicotlactone A 1 (75%) in one pot via
sequential reactions such as acetonide deprotection followed by
the intramolecular lactonization reactions. By this way the target
molecule was achieved in shorter steps than the envisaged step-
wise strategy. The data of the synthetic sample matched with the
reported values of the natural product.1,7
5. Komatsu, K.; Tanino, K.; Miyashita, M. Angew. Chem. 2004, 116, 4441–4445.
6. (a) Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945–948; (b)
Rychnovsky, S. D.; Yang, G. J. Org. Chem. 1993, 58, 3511–3515.
7. Spectral data of the compounds: Compound 8: Pale yellow liquid; 1H NMR
(300 MHz, CDCl3): d 5.93 (s, 1H), 4.20–4.06 (m, 4H), 2.08 (s, 3H), 1.99 (br s, 1H),
1.29 (t, 3H, J = 7.1 Hz); 13C NMR (75 MHz, CDCl3): d 167.0, 157.4, 113.4, 66.7,
59.7, 15.4, 14.1; LCMS: 167 [M+Na]+. Anal. Calcd for C7H12O3: C, 58.32; H, 8.39;
O, 33.29. Found: C, 58.48; H, 8.25; O, 33.27. Compound 9: Colorless liquid; 1H
NMR (500 MHz, CDCl3): d 7.23 (d, 2H, J = 8.4 Hz), 6.84 (d, 2H, J = 8.4 Hz), 5.95 (s,
1H), 4.45 (s, 2H), 4.16 (q, 2H, J = 14.3, 6.9 Hz), 3.93 (s, 2H), 3.81 (s, 3H), 2.11 (s,
3H), 1.31(t, 3H, J = 6.9 Hz); 13C NMR (75 MHz, CDCl3): d 166.6, 159.2, 154.5,
131.9, 129.8, 129.2, 115.2, 114.2, 113.8, 73.7, 72.1, 59.6, 55.2, 15.7, 14.2; HRMS
m/z: calcd for C15H20O4Na [M+Na]+: 287.1253; found: 287.1262. Compound 7:
Colorless liquid; 1H NMR (300 MHz, CDCl3): d 7.27 (d, 2H, J = 8.4 Hz), 6.88 (d, 2H,
J = 8.6 Hz), 5.68 (dt, 1H, J = 6.7, 1.1 Hz), 4.42 (s, 2H), 4.21 (d, 2H, J = 6.6 Hz), 3.90
(s, 2H), 3.81(s, 3H), 1.71 (s, 3H); 13C NMR (75 MHz, CDCl3): d 159.0, 135.3, 130.2,
129.2, 126.1(2), 113.6(2), 75.0, 71.5, 58.8, 55.1, 13.9; HRMS: m/z calcd for
C
13H18O3Na [M+Na]+: 245.1148; found: 245.1157. Compound 10: Colorless
liquid; ½a 2D5
ꢁ
5.9 (c 0.05, CHCl3); 1H NMR (300 MHz, CDCl3): d 7.20 (d, 2H,
J = 8.4 Hz), 6.82 (d, 2H, J = 8.3 Hz), 4.45 (br s, 2H), 3.79 (br s, 4H), 3.72–3.61 (m,
1H), 3.39 (br s, 2H), 3.01 (t, 1H, J = 5.4 Hz), 1.33 (s, 3H); 13C NMR (75 MHz,
CDCl3): d 159.2, 129.8, 129.3, 113.8(4), 73.8, 72.9, 60.9, 60.4, 60.0, 55.1, 25.7,
14.5; HRMS m/z: calcd for C13H18O4Na [M+Na]+: 261.1097; found: 261.1093.
In summary, the first total synthesis of nicotlactone A (24%
overall yield) was reported via acid catalyzed intramolecular lact-
onization of the corresponding hydroxyl protected acid wherein
multiple reactions occurred in one step. This strategy may be
adopted for the synthesis of similar ring-containing natural
products.
Compound 6: Pale yellow liquid; ½a D25
ꢁ
+12.5 (c 0.05, CHCl3); 1H NMR (300 MHz,
CDCl3): d 7.25 (d, 2H, J = 7.5 Hz), 6.89 (d, 2H, J = 8.6 Hz), 4.50 (q, 2H, J = 16.6,
11.5 Hz), 3.81 (br s, 3H), 3.74 (d, 1H, J = 9.6 Hz), 3.61–3.51 (m, 1H), 3.40 (d, 1H,
J = 9.0 Hz), 3.28 (d, 1H, J = 9.0 Hz), 2.97 (br s, 1H), 2.11–1.98 (m, 1H), 1.66 (br s,
1H), 1.14 (br s, 3H), 0.78 (d, 3H, J = 7.1 Hz); 13C NMR (75 MHz, CDCl3): d 159.2,
129.8, 129.2, 113.7(2), 76.1, 75.9, 73.0, 65.5, 55.2, 40.0, 19.2, 12.6; HRMS m/z:
calcd for
C
14H22O4Na [M+Na]+: 277.1410; found: 277.1407. Compound 11:
Colored oil; ½a 2D5
ꢁ
ꢀ6.2 (c 0.05, CHCl3); 1H NMR (300 MHz, CDCl3): d 7.24 (d, 2H,
J = 8.6 Hz), 6.88 (d, 3H, J = 7.9 Hz), 6.75 (dd, 2H, J = 9.8 Hz), 5.93 (s, 2H), 5.14 (br
s, 1H), 4.54 (d, 1H, J = 9.0 Hz), 4.45 (d, 1H, J = 11.3 Hz), 3.80 (br s, 3H), 3.41 (d, 1H,
J = 9.4 Hz), 3.25 (d, 1H, J = 9.4 Hz), 2.16–2.03 (m, 1H), 1.25 (s, 3H), 0.45 (d, 3H,
J = 6.7 Hz); 13C NMR (75 MHz, CDCl3): d 159.2, 147.6, 146.8, 137.6, 129.6, 129.3,
120.9, 113.7(3), 107.6, 107.4, 100.8, 77.6, 76.8, 76.1, 73.0, 60.3, 55.1, 44.4, 29.6,
Acknowledgments
Two of the authors (S.P. and C.S.) thank CSIR, New Delhi, for the
financial support in the form of a fellowship.
18.1, 13.3; HRMS m/z: calcd for
C
21H26O6Na [M+Na]+: 397.1621; found:
397.1637; LCMS {Column: XDB-C18, 30% water in acetonitrile, flow rate:
1 mL/min, 254 nm, tr(major) = 2.814 min, tr(minor) = 2.339 min}. Compound 13:
Supplementary data
Pale yellow oil; ½a D25
ꢁ
ꢀ16.5 (c 0.05, CHCl3); 1H NMR (300 MHz, CDCl3): d 7.27 (d,
2H, J = 8.4 Hz), 6.93 (br s, 1H), 6.86 (d, 2H, J = 8.4 Hz), 6.81 (d, 1H, J = 8.1 Hz), 6.77
(d, 1H, J = 7.9 Hz), 5.93 (d, 2H, J = 3.0 Hz), 4.65 (d, 1H, J = 11.8 Hz), 4.54 (d, 1H,
J = 8.8 Hz), 4.47 (d, 1H, J = 7.5 Hz), 3.80 (br s, 3H), 3.35 (q, 2H, J = 12.6, 10.7 Hz),
2.16–1.99 (m, 1H), 1.55 (br s, 3H), 1.47 (br s, 3H), 1.29 (br s, 3H), 0.52 (d, 3H,
Supplementary data associated with this article can be found, in
J = 6.9 Hz); 13C NMR (75 MHz, CDCl3):
d 159.0, 147.7, 147.2, 134.6, 130.7,
129.1(2), 121.2, 113.6(3), 107.6, 100.8, 98.5, 77.1, 74.2, 73.1, 55.1, 38.8, 31.8,
24.9, 19.7, 12.0; HRMS m/z: calcd for C24H30O6Na [M+Na]+: 437.1821; found:
References and notes
437.1816. Compound 5: Pale yellow oil; ½a D25
ꢁ
ꢀ14.5 (c 0.05, CHCl3); 1H NMR
(300 MHz, CDCl3): d 6.93 (d, 1H, J = 1.5 Hz), 6.83 (dd, 1H, J = 1.5 Hz), 6.78 (d, 1H,
J = 4 Hz), 5.96–5.93 (m, 2H), 4.53 (d, 1H, J = 10.5 Hz), 3.42–3.31 (m, 2H), 2.23–
1. Gao, X.; Li, X.; Yang, X.; Mu, H.; Chen, Y.; Yang, G.; Hu, Q. Heterocycles 2012, 85,
147–153.
2. Cheng, W.; Zhu, C.; Xu, W.; Fan, X.; Yang, Y.; Li, Y.; Chen, X.; Wang, W.; Shi, J. J.
Nat. Prod. 2009, 72, 2145–2152.
3. (a) Radha Krishna, P.; Ramana Reddy, V. V. Tetrahedron Lett. 2005, 46, 3905–
3907; (b) Radha Krishna, P.; Srinivas Reddy, P. Tetrahedron 2007, 63, 3995–3999;
(c) Radha Krishna, P.; Srinivas, R. Tetrahedron Lett. 2007, 48, 2013–2015; (d)
Radha Krishna, P.; Srinivas, P. Tetrahedron Lett. 2010, 51, 2295–2296; (e) Radha
Krishna, P.; Satyanarayana, M. V. S.; Arun Kumar, P. V. Tetrahedron Lett. 2012, 53,
4997–4999.
2.13 (m, 1H), 1.57 (br s, 3H), 1.45 (s, 3H), 1.26 (s, 3H), 0.56 (d, 3H, J = 6.9 Hz); 13
C
NMR (75 MHz, CDCl3): d 146.7, 136.0, 120.5, 107.8, 100.8, 75.1, 71.8, 69.6, 48.5,
31.9, 29.6, 25.3, 22.6, 19.3, 14.0, 11.8; HRMS m/z: calcd for C16H22O5Na [M+Na]+:
317.1359; found: 317.1368. Nicotlactone A 1: Pale yellow crude oil; ½a D25
ꢁ
+23.3 (c
0.05, CHCl3); 1H NMR (500 MHz, CD3COCD3): d 6.97 (br s, 1H), 6.92 (d, 1H,
J = 8.1 Hz), 6.85 (d, 1H, J = 8.1 Hz), 6.02 (br s, 2H), 5.01 (d, 1H, J = 9.4 Hz), 4.86 (br
s, 1H), 2.19–2.12 (m, 1H), 1.43 (br s, 3H), 1.01 (d, 3H, J = 6.9 Hz); 13C NMR
(75 MHz, CD3COCD3): d 176.1, 147.5, 131.4, 120.5, 107.3, 113.3, 100.8, 83.9, 77.7,
73.4, 48.7, 20.0, 6.3; HRMS m/z: calcd for C13H14O5Na [M+Na]+: 273.0733;
found: 273.0746.
4. Sharpless, K. B.; Behrens, H. C.; Katsuki, T.; Lee, M. W. A.; Martin, S. V.; Takatani,
M.; Viti, M. S.; Walker, J. F.; Woodard, S. S. Pure Appl. Chem. 1983, 55, 589–604.