868
H. Rajak et al. / Bioorg. Med. Chem. Lett. 23 (2013) 864–868
13. Rajak, H.; Deshmukh, R.; Aggarwal, N.; Kashaw, S.; Kharya, M. D.; Mishra, P.
Arch. Pharm. 2009, 342, 453.
14. Yogeeswari, P.; Thirumurugan, R.; Kavya, R.; Samuel, J. S.; Stables, J.; Sriram, D.
Eur. J. Med. Chem. 2004, 39, 729.
15. Siddiqui, N.; Rana, A.; Khan, S. A.; Bhat, M. A.; Haque, S. E. Bioorg. Med. Chem.
Lett. 2007, 17, 4178.
16. Smitha, S.; Pandeya, S. N.; Stables, J. P.; Ganapathy, S. Sci. Pharm. 2008, 76, 621.
17. Kashaw, S. K.; Kashaw, V.; Mishra, P.; Jain, N. K.; Stables, J. P. Eur. J. Med. Chem.
2009, 44, 4335.
18. Azam, F.; El-Gnidi, B. A.; Alkskas, I. A. Eur. J. Med. Chem. 2010, 45, 2817.
19. Kaushik, D.; Khan, S. A.; Chawla, G.; Kumar, S. Eur. J. Med. Chem. 2010, 45, 3943.
20. Prakash, C. R.; Saravanan, S. R. G. Int. J. Pharm. Sci. 2010, 4, 177.
21. Rajak, H.; Deshmukh, R.; Veerasamy, R.; Sharma, A. K.; Mishra, P.; Kharya, M. D.
Bioorg. Med. Chem. Lett. 2010, 20, 4168.
22. Rajak, H.; Kharya, M. D.; Mishra, P. Arch. Pharm. 2008, 341, 247.
23. Compound 04: Mp (°C) 284–286; yield 55%; IR (cmÀ1) (KBr) 3031.64 (aromatic
C–H str), 1603.28 and 1503.63 (aromatic C–C str), 1682.04 (C@O str of amide),
3452.61 (N–H str of amide), 1095.74 (C–O of oxadiazole nucleus), 1659.42
(C@N of oxadiazole), 844.38 (C–H def para disubstituted aromatic ring);
3089.01 (@C–H str of limonene nucleus), 1631.47 (C@C str of limonene),
893.52 (C–H bend, terminal of limonene), 784.31 (C–H bend, out of plane of
limonene), 1562.74 and 1335.80 (N@O str of Ar-NO2); 1H NMR (300 MHz,
DMSO-d6, TMS, d ppm): 7.44–8.32 (m, 4H, ArH), 6.12 (s, 1H, NHCONHN), 7.22
(s, 1H, NHCONHN), 4.77 (s, 2H, CH2), 1.72 (s, 3H, CH3 of limonene nucleus and
C(CH2)CH3), 5.59 (s, 1H, CH of limonene nucleus), 1.98 (t, 2H, C@CHCH2CH of
limonene nucleus), 1.42 (d, 2H, CCH2CH of limonene nucleus); ESI-MS
(Methanol) m/z 397.16 ([M+H]+); elemental analysis: C19H20N6O4% found
(calculated): C, 57.84 (57.57); H, 5.15 (5.09); N, 21.05 (21.20).
Compound 09: MP(°C) 262–264; yield 59%; IR (cmÀ1) (KBr) 3046.51 (aromatic
C–H str), 1605.73 and 1505.38 (aromatic C–C str), 1682.98 (C@O str of amide),
3442.74 (N–H str of amide), 1090.93 (C–O of oxadiazole nucleus), 1661.34
(C@N of oxadiazole), 841.83 (C–H def para disubstituted aromatic ring);
3082.38 (@C–H str of limonene nucleus), 2918.82 (C–H str, both sp2 and sp3),
1632.85 (C@C str of limonene), 896.02 (C–H bend, terminal), 789.48 (C–H
bend, out of plane), 3549.27 (O–H str); 1H NMR (300 MHz, DMSO-d6, TMS, d
ppm): 6.72–7.18 (m, 4H, ArH), 6.11 (s, 1H, NHCONHN), 7.25 (s, 1H, NHCONHN),
4.84 (s, 2H, CH2), 1.79 (s, 3H, CH3 of limonene nucleus and C(CH2)CH3), 5.55 (s,
1H, CH of limonene nucleus), 2.08 (t, 2H, C@CHCH2CH of limonene nucleus),
1.46 (d, 2H, CCH2CH of limonene nucleus), 5.21 (s, 1H, OH); ESI-MS (Methanol)
m/z 368.16 ([M+H]+); elemental analysis: C17H21N5O3% found (calculated): C,
62.35 (62.11); H, 5.51 (5.76); N, 19.28 (19.06).
system, and another hydrophobic distal hydrocarbon moiety in the
form of limonene or citral might be responsible for controlling the
pharmacokinetic properties of the anticonvulsant. Thus, these find-
ings confirmed the long-established four binding site hypothesis
for semicarbazones. In the present study N4-(5-{4-nitro-phenyl}-
1,3,4-oxadiazol-2-yl)-N1-(2-methyl-5-{prop-1-en-2-yl}cyclohex-
2-enylidene)-semicarbazone 4 emerged out as the most active
compound showing considerable activity in maximal electroshock
seizure (at 100 mg/kg after 0.5 h and at 300 mg/kg after 4.0 h), sub-
cutaneous pentylenetrtrazole model (at 100 mg/kg after 0.5 h and
at 300 mg/kg after 4.0 h) and subcutaneous strychnine model (at
300 mg/kg after 4.0 h) without any neurotoxicity (up to 300 mg/
kg after 4.0 h).
In conclusion,
a
series of novel N4-(5-(2/3/4-substituted-
phenyl)-1,3,4-oxadiazol-2-yl)-N1-(2-methyl-5-(prop-1-en-2-yl)
cyclohex-2-enylidene)semicarbazide 01–09 and N4-(5-(2/3/4-
substituted phenyl)-1,3,4-oxadiazol-2-yl)-N1-(3,7-dimethylocta-
3,6-dienylidene)-semicarbazide 10–18 were synthesized to meet
structural requirements necessary for anticonvulsant activity. The
limonene based semicarbazones were found to possess more anti-
convulsant activity than citral based semicarbazones. The results
of the GABA assay indicate that the test compounds have inhibited
or attenuated seizures by facilitating GABAergic neurotransmission.
Our results validated that the pharmacophoric model with four
binding sites is essential for anticonvulsant activity.
Acknowledgments
Four of the authors, Bhupendra Singh Thakur, Avineesh Singh,
Kamlesh Raghuvanshi and Anil Kumar Sah are thankful to AICTE
New Delhi, India for awarding Research Fellowship and financial
assistance. The help rendered by SAIF, CDRI Lucknow for elemental
and spectral analysis is gratefully acknowledged.
Compound 13: Mp (°C) 274–276; yield 60%; IR (cmÀ1) (KBr) 3037.72 (aromatic
C–H str), 1603.20 and 1506.63 (aromatic C–C str), 1688.15 (C@O str of amide),
3450.48 (N–H str of amide), 1090.61 (C–O of oxadiazole nucleus), 1665.80
(C@N of oxadiazole), 842.93 (C–H def para disubstituted aromatic ring),
1565.78 and 1337.22 (N@O str of Ar-NO2), 2957.14 (C–H str, citral), 1638.28
(C@C str, citral); 1H NMR (300 MHz, DMSO-d6, TMS, d ppm): 7.69–8.32 (m, 4H,
ArH), 6.08 (s, 1H, NHCONHN), 7.18 (s, 1H, NHCONHN), 5.28 (t, 1H, CH of citral
moiety), 1.78 (s, 3H, CH3 of citral moiety), 2.11 (d, 2H, CH2C(CH3)@CHCH2CH of
citral moiety), 2.71 (s, 2H, CH2C(CH3)@CHCH2CH of citral moiety); ESI-MS
(methanol) m/z 399.17 ([M+H]+); elemental analysis: C19H22N6O4% found
(calculated): C, 57.39 (57.28); H, 5.65 (5.57); N, 21.24 (21.09).
24. Krall, R. L.; Penry, J. K.; White, B. G.; Kupferberg, H. J.; Swinyard, E. A. Epilepsia
1978, 19, 409.
25. Porter, R. J.; Hessie, B. J.; Cereghino, J. J.; Gladding, G. D.; Kupferberg, H. J.;
Scoville, B.; White, B. G. Fed. Proc. 1985, 44, 2645.
26. Loscher, W.; Schmidt, D. Epilepsy Res. 1994, 17, 95.
27. Vogel, H. G. Drug Discovery and Evaluation—Pharmacological Assays; Springer:
Germany, 2002. pp 487–493.
28. Olsen, R. W. J. J. Neurochem. 1981, 27, 1.
29. Okada, R.; Negishi, H. Brain Res. 1989, 480, 383.
30. Treiman, D. M. Epilepsia 2001, 42, 8.
31. Gale, K. Epilepsia 1992, 33, S3.
32. Thirumurugan, R.; Sriram, D.; Saxena, A.; Stables, J. P.; Yogeeswari, P. Bioorg.
Med. Chem. 2006, 14, 3106.
33. Shalini, M.; Yogeeswari, P.; Sriram, D.; Stables, J. P. Biomed. Pharmacother. 2009,
63, 187.
34. Roberts, E. In Methods in Enzymology; Academic: New York, 1963; Vol. 6, pp
610–615.
35. Baxter, C. F.; Roberts, E. J. Biol. Chem. 1961, 236, 3287.
36. Johnston, G. A. R.; Hanrahan, J. R.; Chebib, M.; Duke, R. K.; Mewett, K. N. Adv.
Pharmacol. 2006, 54, 286.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Fisher, R.; Boas, W. V. E.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J.
Epilepsia 2005, 46, 470.
2. Perucen, E. Br. J. Clin. Pharmacol. 1996, 42, 531.
3. Kramer, G. Epilepsia 2001, 42, 55.
4. Yogeeswari, P.; Sriram, D.; Veena, V.; Kavya, R.; Rakhra, K.; Mehta, S.;
Thirumurugan, R.; Stables, J. P. Biomed. Pharmacother. 2005, 59, 51.
5. Singh, P.; Jain, J.; Sinha, R.; Samad, A.; Kumar, R.; Malhotra, M. Cent. Nerv. Syst.
Agents Med. Chem. 2011, 11, 60.
6. Alam, O.; Mullick, P.; Verma, S. P.; Gilani, S. J.; Khan, S. A.; Siddiqui, N.; Ahsan,
W. Eur. J. Med. Chem. 2010, 45, 2467.
7. Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeizadeh, A.; Mehrabai, N.;
Dalvandi, A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2004, 14, 6057.
8. Zarghi, A.; Faizi, M.; Shafaghi, B.; Ahadian, A.; Khojastehpoor, H. R.; Zangaheh,
V.; Tabatabai, S. A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2005, 15, 3126.
9. Zarghi, A.; Hajimahdi, Z.; Mohebbi, S.; Rashidi, H.; Mozaffari, S.; Sarraf, S.; Faizi,
M.; Tabatabaee, S. A.; Shafiee, A. Chem. Pharm. Bull. 2008, 56, 509.
10. Pandeya, S. N.; Ponnilavarasan, I.; Pandey, A.; Lakhan, R.; Stables, J. P. Pharmazie
1999, 54, 923.
11. Wong, M. G.; Dejina, J. A.; Andrews, P. R. J. Med. Chem. 1986, 29, 562.
12. Rajak, H.;Singour, P.K.;Kharya, M. D.;Mishra, P.Chem.Biol. DrugDes. 2011, 77, 152.
37. Sousa, D. P. D. Molecules 2011, 16, 2233.