(d) Q.Q. Yang, C. Xiao, L.Q. Lu, et al., Synthesis of indoles through highly efficient cascade reactions of
sulfur ylides and N-(ortho-chloromethyl)aryl amides, Angew. Chem. Int. Ed. 51 (2012) 9137-9140;
(e) X. Zhang, Y.F. Li, H. Shi, et al., Rhodium(III)-catalyzed intramolecular amidoarylation and
hydroarylation of alkyne via C–H activation: switchable synthesis of 3,4-fused tricyclic indoles and
chromans, Chem. Commun. 50 (2014) 7306-7309;
(f) M. Inman, C.J. Moody, Indole synthesis-something old, something new, Chem. Sci. 4 (2013) 29-41;
(g) G.R. Humphrey, J.T. Kuethe, Practical methodologies for the synthesis of indoles, Chem. Rev. 106
(2006) 2875-2911;
(h) L.J. Gu, C. Jin, H.T. Zhang, L.Z. Zhang, Copper-catalyzed aerobic oxidative cleavage of C–C bonds
in epoxides leading to aryl ketones, J. Org. Chem. 79 (2014) 8453-8456;
(i) R. Leurs, P.L. Chazot, F.C. Shenton, H.D. Lim, I.J.D. Esch, Molecular and biochemical
pharmacology of the histamine H4 receptor, Br. J. Pharmacol. 157 (2009) 14-23;
(j) P. Sang, Z.K. Chen, J.W. Zou, Y.H. Zhang, K2CO3 promoted direct sulfenylation of indoles: a facile
approach towards 3-sulfenylindoles, Green Chem. 15 (2013) 2096-2100.
[3] For selected examples, see:
(a) M.M. Faul, L.L. Winnerosk, Palladium-catalyzed acylation of a 1, 2-disubstituted 3-indolylzinc
chloride, Tetrahedron Lett. 38 (1997) 4749-4752;
(b) S.K. Guchhait, M. Kashyap, H. Kamble, ZrCl4-mediated regio- and chemoselective friedel–crafts
acylation of indole, J. Org. Chem. 76 (2011) 4753-4758;
(c) H. Johansson, A. Urruticoechea, I. Larsen, D.S. Pedersen, A scalable method for regioselective 3-
acylation of 2-substituted indoles under basic conditions, J. Org. Chem. 80 (2015) 471-478;
(d) N.N Wan, Y.H. Hui, Z.F. Xie, J.D. Wang, Friedel-crafts alkylation of indoles with nitroalkenes
catalyzed by Zn(II)-thiourea complex, Chin. J. Chem. 30 (2012) 311-315;
(e) P. Zhang, T.B. Xiao, S.W. Xiong, X.C. Dong, L. Zhou, Synthesis of 3-acylindoles by visible-light
induced intramolecular oxidative cyclization of o-alkynylated N,N-dialkylamines, Org. Lett. 14 (2014)
3264-3267;
(f) L. Yu, P.H. Li, L. Wang, Copper-promoted decarboxylative direct C3-acylation of N-
substituted indoles with α-oxocarboxylic acids, Chem. Commun. 49 (2013) 2368-2370.
[4] For selected examples, see:
(a) J.H. Wynne, C.T. Lloyd, S.D. Jensen, S. Boson, W.M. Stalick, 3-Acylindoles via a one-pot,
regioselective friedel-crafts reaction, Synthesis 14 (2004) 2277-2282;
(b) K. Yeung, M.E. Farkas, Z.L. Qiu, Z. Yang, Friedel-crafts acylation of indoles in acidic imidazolium
chloroaluminate ionic liquid at room temperature, Tetrahedron Lett. 43 (2002) 5793-5795;
(c) T. Okauchi, M. Itonaga, T. Minami, et al., General method for acylation of indoles at the 3-position
with acyl chlorides in the presence of dialkylaluminum chloride, Org. Lett. 2 (2000) 1485-1487.
[5] W. Anthony, Novel synthesis of heterocyclic ketones, J. Org. Chem. 25 (1960) 2049-2053.
[6] J. Bergman, L. Venemalm, Intramolecular, ring closure of α, β-unsaturated 3-acylindoles, Tetrahedron
Lett. 28 (1987) 3741-3744.
[7] For selected examples, see:
(a) Y.H. Ma, J.S. You, F.J. Song, Facile access to 3-acylindoles through palladium-catalyzed addition of
indoles to nitriles: the one-pot synthesis of indenoindolones, Chem. Eur. J. 19 (2013) 1189-1193;
(b) M.N. Zhao, L.F. Ran, M. Chen, et al., Palladium-catalyzed carbonylation of indoles for synthesis of
indol-3-yl aryl ketones, ACS Catal. 5 (2015) 1210-1213;
(c) W.L. Wu, W.P. Su, Mild and selective Ru-catalyzed formylation and Fe-catalyzed acylation of free
(N–H) indoles using anilines as the carbonyl source, J. Am. Chem. Soc. 133 (2011) 11924-11927;
(d) L.J. Gu, J.Y. Liu, L.Z. Zhang, Y. Xiong, R. Wang, Synthesis of 3-acylindoles via decarboxylative
cross-coupling reaction of free (N-H) indoles with α-oxocarboxylic acids, Chin. Chem. Lett. 25(2014)
90-92.
[8] For selected reviews on visible-light photoredox catalysis, see:
(a) J. Xuan, W.J. Xiao, Visible-light photoredox catalysis, Angew. Chem. Int. Ed. 51 (2012) 6828-6838;
Page 8 of 10