Organometallics
Article
131.76, 132.07, 137.13, 137.14, 147.02, 148.03, 148.05, 149.95, 150.00,
154.46, 207.57, 207.87. HRMS (EI) calcd for C21H16N2O3 344.1161,
found 344.1158. IR (neat) 3368, 2926, 2855, 1938, 1591, 1519, 1471,
1345, 1046, 747, 695 cm−1.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details, NMR spectra of all new products, CIF
files giving crystallographic data of compounds 2a′ and 4a, the
calculated reaction pathways, total energies and geometrical
coordinates. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(Grant Nos. 21125210, 21072208, 21121062, 21172248),
Chinese Academy of Science and the Major State Basic
Research Development Program (Grant No. 2011CB808700)
for financial support.
REFERENCES
(1) Marshall, J. A. J. Org. Chem. 2007, 72, 8153.
(2) For regioselective reactions involving allenyl/propargyl metal
■
Figure 4. Optimized pyridine coordinated γ-addition transition states
of 1a with p-NO2C6H4CHO. The selected bond lengths are in
angstroms, and the relative free energies ΔG(298K) are in kcal/mol.
species, see: For Sn: (a) Kjellgren, J.; Sunden
Chem. Soc. 2004, 126, 474. For Ti: (b) Schultz-Fademrecht, C.;
́ ́
, H.; Szabo, K. J. Am.
Wibbeling, B.; Frohlich, R.; Hoppe, D. Org. Lett. 2001, 3, 1221. For
̈
Zn: (c) Yanagisawa, A.; Habaue, S.; Yamamoto, H. J. Org. Chem. 1989,
54, 5198. (d) Marshall, J. A.; Adams, N. D. J. Org. Chem. 1999, 64,
5201. (e) Marshall, J. A.; Adams, N. D. J. Org. Chem. 1998, 63, 3812.
(f) Ma, S.; Zhang, A. J. Org. Chem. 1998, 63, 9601. (g) Ma, S.; Zhang,
A.; Yu, Y.; Xia, W. J. Org. Chem. 2000, 65, 2287. (h) Ma, S.; Wang, G.
Angew. Chem., Int. Ed. 2003, 42, 4215. For In: (i) Marshall, J. A.;
Grant, C. M. J. Org. Chem. 1999, 64, 696. (j) Marshall, J. A.; Grant, C.
M. J. Org. Chem. 1999, 64, 8214. For Sm: (k) Tabuchi, T.; Inanaga, J.;
Yamaguchi, M. Chem. Lett. 1987, 2275. (l) Mikami, K.; Yoshida, A.;
Matsumoto, S.; Feng, F.; Matsumoto, Y.; Sugino, A.; Hanamoto, T.;
Inanaga, J. Tetrahedron Lett. 1995, 36, 907. (m) Makioka, Y.; Koyama,
K.; Nishiyama, T.; Takaki, K. Tetrahedron Lett. 1995, 36, 6283. For
Ba: (n) Yanagisawa, A.; Suzuki, T.; Koide, T.; Okitsu, S.; Arai, T.
Chem. Asian J. 2008, 3, 1793. and references cited therein. For Li:
(o) Tokeshi, B. K.; Tius, M. A. Synthesis 2004, 786. (p) Brandsma, L.;
Nedolya, N. A. Synthesis 2004, 735. For B: (q) Canales, E.; Gonzalez,
A. Z.; Soderquist, J. A. Angew. Chem., Int. Ed. 2007, 46, 397.
(r) Fandrick, D. R.; Saha, J.; Fandrick, K. R.; Sanyal, S.; Ogikubo, J.;
Lee, H.; Roschangar, F.; Song, J. J.; Senanayake, C. H. Org. Lett. 2011,
13, 5616. For asymmetric allenylation of aldehydes with propargyl
bromides catalyzed by tethered bis(8-quinolinolato)(TBOx) chromi-
um complex, see: (s) Xia, G.; Yamamoto, H. J. Am. Chem. Soc. 2007,
129, 496. For reviews see: (t) Transition Metal Reagents and Catalysts:
Innovations in Organic Synthesis; Tsuji, J., Ed.; Wiley: Chichester, 2002;
Chapter 6. (u) Yamamoto, H. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2,
pp 81−98. (v) Marshall, J. A. Chem. Rev. 2000, 100, 3163. (u) Ma, S.
Eur. J. Org. Chem. 2004, 1175.
added and the reaction mixture was warmed up to room temperature
and stirred for 3 h. The solvent was removed in vacuo, and then
toluene (5 mL) was added. Aldehyde (1 mmol) was added and the
reaction mixture was stirred for another 2 h. The resulting mixture was
quenched with saturated NaHCO3 solution and extracted with EtOAc.
The extract was washed with water, brine, and dried over anhydrous
Na2SO4. The solvent was evaporated under the reduced pressure and
the residue was purified by column chromatography on silica gel to
afford the desired products.
4-(1-Hydroxy-2-(pyridin-2-yl)hepta-2,3-dien-1-yl)-
benzonitrile (4k). Column chromatography on silica gel (petroleum
ether/ethyl acetate =10/1, then petroleum ether/Et3N = 10/1)
afforded the title product as a yellow solid in 52% yield. The ratio of
1
the two diastereomers is 1.1:1. H NMR (400 MHz, CDCl3) two
isomers: δ 0.87 (t, J = 7.2 Hz), 1.33−1.38 (m), 1.97−2.03 (m), 5.52 (t,
J = 7.2 Hz), 5.85 (s), 5.88 (s), 7.09−7.12 (m), 7.46 (d, J = 12.0 Hz),
7.59−7.65 (m), 8.43 (d, J = 5.2 Hz). The chemical shift of OH proton
was not observed. 13C NMR (100 MHz, CDCl3) two isomers: δ 13.50,
13.51, 22.12, 22.16, 30.22, 30.31, 73.89, 74.08, 96.84, 96.86, 107.84,
107.92, 110.44, 110.46, 118.96, 121.44, 122.53, 122.55, 127.14, 127.20,
131.50, 136.71, 136.73, 147.66, 147.68, 148.26, 148.38, 155.62, 155.65,
205.00, 205.26. HRMS (EI) calcd for C19H18N2O 290.1419, found
290.1424. IR (neat) 3587, 2958, 2928, 2856, 2227, 1616, 1295, 1090,
742 cm−1.
1-(4-Nitrophenyl)-4-phenyl-2-(pyridin-2-yl)buta-2,3-dien-1-
ol (4l). 1.6 equiv Negishi reagent was used. Column chromatography
on silica gel (petroleum ether/ethyl acetate = 10/1) afforded the
product as a yellow solid in 41% yield. The ratio of the two
1
(3) For Zr: (a) Ito, H.; Nakamura, T.; Taguchi, T.; Hanzawa, Y.
Tetrahedron Lett. 1992, 33, 3769. (b) Ito, H.; Nakamura, T.; Taguchi,
T.; Hanzawa, Y. Tetrahedron 1995, 51, 4507. For Ti: (c) Okamoto, S.;
An, D. K.; Sato, F. Tetrahedron Lett. 1998, 39, 4551. (d) Yatsumonji,
Y.; Sugita, T.; Tsubouchi, A.; Takeda, T. Org. Lett. 2010, 12, 1968.
(e) Yang, F.; Zhao, G.; Ding, Y. Tetrahedron Lett. 2001, 42, 2839.
diastereomers is 2.3:1. H NMR (400 MHz, CDCl3) two isomers: δ
6.02 (s), 6.07 (s), 6.54−6.57 (m, 1H), 6.85 (s, 1H), 7.14−7.18 (m,
1H), 7.23−7.33 (m, 5H), 7.48−7.49 (m, 1H), 7.60−7.69 (m, 3H),
8.08−8.13 (m, 2H), 8.49−8.51 (m, 1H). 13C NMR (100 MHz,
CDCl3) two isomers: δ 73.75, 74.51, 100.15, 111.66, 122.25, 123.07,
123.12, 126.93, 126.97, 127.15, 127.30, 127.99, 128.02, 128.85, 128.89,
1641
dx.doi.org/10.1021/om301007z | Organometallics 2013, 32, 1636−1642