948
A. Valdenaire et al. / Bioorg. Med. Chem. Lett. 23 (2013) 944–948
(A)
(D)
(B)
(C)
H
O
E
H
O
O
H
H
H
E
N
H
E
H
NH
N
H
N
H
R
R
N
N
H
N
COOH
II (s-cis)
II (s-trans)
13a
13a
O
O
O
O
N
H
R
N
N
H
N
H
N
N
N
N
N
COOH
COOH
COOH
COOH
19a-d
16
IC50 490 nM
17
IC50 145 nM
18
IC50 430 nM
Figure 2. (A) Substituted diene II reflecting the (E)-2-cyano-3-(1H-indol-3-yl)acrylamide motif in its s-cis and s-trans conformation; (B) low energy conformation of structure
13a, purple arrows indicate sites of ring closure; (C) molecular design: ring closing tactic (green arrow) locking the molecule in the s-cis conformation; (D) ‘proof-of-concept’
variants 16, 17, 18 and 19a–d as envisaged from ring closing tactic.
providing DMPK data, M. Holdener and K. Hilpert for supportive
discussions, and J. Williams for proofreading the manuscript.
Table 5
hCRTh2 receptor binding IC50 values of compounds 19a–d
Compd.
R
hCRTh2 binding
(buffer) IC50 (nM)
Supplementary data
R1
6
a
b
c
d
Benzyl
Methyl
n-Pentyl
200
1600
210
17
5
4
H
Supplementary data associated with this article can be found,
12.050. These data include MOL files and InChiKeys of the most
important compounds described in this article.
O
N
Phenyl
7
CN Me
N
COOH
19
References and notes
1. Murray, J. J.; Tonnel, A. B.; Brash, A. R. N. Engl. J. Med. 1986, 315, 800.
2. Gervais, F. G.; Cruz, R. P.; Chateauneuf, A.; Gale, S.; Sawyer, N.; Nantel, F.;
Metters, K. M.; O’Neill, G. P. J. Allergy Clin. Immunol. 2001, 108, 982.
3. Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.;
Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. J. Exp. Med.
2001, 193, 255.
to fully characterize 19d and to benchmark it with 14g (Table 4).
Comparable potency in the inhibition of the eosinophil shape
change (IC50 = 110 nM) and high selectivity against the other pro-
stanoid receptors were obtained. Improved PK characteristics, for
example, a threefold higher exposure (AUC0–last 6300 ng h mLÀ1),
a three times lower clearance (4.6 mL minÀ1 kgÀ1) and a prolonged
T1/2 (2.3 h) was found for 19d in Wistar rats at single intravenous
and oral doses of 1 and 10 mg/kg, respectively. The lack of obvious
ADME liabilities (no CYP inhibition, low metabolic clearance), im-
proved stability in SGF and SIF were the basis to further exploit
19d as a novel drug-like lead structure, devoid of any structural
alerts. Improving potency and oral bioavailability was the goal of
a subsequent lead optimization program which would finally cul-
minate in the selection of a clinical candidate (Fretz et al., in
preparation).
4. Pettipher, R. Br. J. Pharmacol. 2008, 153, S191.
5. Kostenis, E.; Ulven, T. Trends Mol. Med. 2006, 12, 148.
6. Pettipher, R.; Hansel, T. T.; Armer, R. Nat. Rev. Drug Disc. 2007, 6, 313.
7. Chen, J. J.; Budelsky, A. L. Prog. Med. Chem. 2011, 50, 49.
8. Burgess, L. E. Annu. Rep. Med. Chem. 2011, 46, 119.
9. Schuligoi, R.; Sturm, E.; Luschnig, P.; Konya, V.; Philipose, S.; Sedj, M.;
Waldhoer, M.; Peskar, B. A.; Heinemann, A. Pharmacology 2010, 85, 372.
10. Pettipher, R.; Hansel, T. T. Prog. Respir. Res. 2010, 39, 193. Karger: Basel.
11. Pothier, J.; Riederer, M. A.; Peter, O.; Leroy, X.; Valdenaire, A.; Gnerre, C.; Fretz,
H. Bioorg. Med. Chem. Lett. 2012, 22, 4660.
12. Such structural alerts are not per se prohibitive for further drug development,
as exemplified with approved Entacapone and Teriflunomide, both drugs
comprising features related to this hit series.
13. Hirata, T.; Narumiya, S. Chem. Rev. 2011, 111, 6209.
14. Knoevenagel, E. Chem. Ber. 1894, 27, 2345.
In summary, we demonstrated the validation and characteriza-
tion of a screening hit series. Attempts to eliminate assumed crit-
ical structural features led to the successful design of novel
CRTh2 antagonist scaffolds. For example, the unexpected excellent
properties of 19d provided an excellent starting point for a lead
optimization program.
15. (a) Schwarz, M. J. Chem. Soc., Chem. Commun. 1969, 212; (b) Zabicky, J. J. Chem.
Soc., Chem. Commun. 1961, 683.
16. Sonar, V. N.; Parkin, S.; Crooks, P. A. Acta Cryst. 2006, E62, o1077.
17. Preparative reverse phase HPLC on a Atlantis Prep T3, 10
lm, 30 Â 75 mm
column; eluent A: acetonitrile, eluent B: water containing 0.5% formic acid;
gradient: 10–90% A in 4 min.; flow rate: 75 ml/min.
18. Barma, D. K.; Kundu, A.; Zhank, H.; Mioskowski, Ch.; Falck, J. R. J. Am. Chem. Soc.
2003, 125, 3218.
19. Stubbs, V. E.; Schratl, P.; Hartnell, A.; Williams, T. J.; Peskar, B. A.; Heinemann,
A.; Sabroe, I. J. Biol. Chem. 2002, 277, 26012.
Acknowledgements
20. Sabroe, I.; Hartnell, A.; Jopling, L. A.; Bel, S.; Ponath, P. D.; Pease, J. E.; Collins, P.
D.; Williams, T. J. J. Immunol 1999, 162, 2946.
21. Asafu-Adjaye, E. B.; Faustino, P. J.; Tawakull, M. A.; Anderson, L. W.; Yu, L. X.;
Kwon, H.; Volpe, D. A. J. Pharm. Biomed. Anal. 2007, 43, 1854.
22. Fecher, A.; Fretz, H.; Riederer M. WO2006070325 (Actelion Pharmaceuticals Ltd,
Switz.), PCT Int. Appl. (2006).
The authors thank S. Koch, D. Lotz, A. Jonuzi, P. Risch, B. Butscha,
J. Giller, B. Lack, S. Brand, for technical support, B. Capeleto for
physico-chemical and Francois Le Goff for stability measurements
in different solution media, R. Bravo, S. Delahaye, and H. Kletzl for