Journal of the American Chemical Society
Article
(f) Ma, X.; Gang, D. R. Nat. Prod. Rep. 2004, 21, 752. (g) Kobayashi,
J.; Morita, H. In The Alkaloids; Cordell, G. A., Ed.; Academic Press:
New York, 2005; Vol. 61, p 1. (h) Hirasawa, Y.; Kobayashi, J.; Morita,
H. Heterocycles 2009, 77, 679. (i) Takayama, H. J. Syn. Org. Chem. Jpn.
2010, 68, 457.
(22) Reaction with 4-phenyl-1,2,4-triazole-3,5(4H)-dione resulted in
decomposition of the substrate. While addition to di-tert-butyl
azodicarboxylate proceeded, further transformation into enone 4
could not be achieved.
(23) Although addition to methyl 2-diazo-2-phenylacetate occurred,
the product could not be converted into enone 4.
(2) Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. J. Org. Chem.
(24) (a) Hwu, J. R.; Huang, J. J.-T.; Tsai, F.-Y.; Tsay, S.-C.; Hsu, M.-
H.; Hwang, K. C.; Horng, J.-C.; Ho, J.-a. A.; Lin, C.-C. Chem.Eur. J.
2009, 15, 8742. (b) Yanagimoto, T.; Toyota, T.; Matsuki, N.; Makino,
Y.; Uchiyama, S.; Ohwada, T. J. Am. Chem. Soc. 2007, 129, 736.
(25) Although a variety of nitroso compounds, including N-methyl-
N-nitroso-p-toluenesulfonamide, N-nitroso-N-methylaniline, and N-
nitrosodimethylamine, were employed, either no reaction or
production of the oxime in low yield occurred.
2001, 66, 5901.
(3) (a) Beshore, D. C.; Smith, A. B., III. J. Am. Chem. Soc. 2007, 129,
4148. (b) Beshore, D. C.; Smith, A. B., III. J. Am. Chem. Soc. 2008, 130,
13778.
(4) Smith, A. B., III; Atasoylu, O.; Beshore, D. C. Synlett 2009, 2643.
(5) (a) Bisai, A.; West, S. P.; Sarpong, R. J. Am. Chem. Soc. 2008, 130,
7222. (b) West, S. P.; Bisai, A.; Lim, A. D.; Narayan, R. R.; Sarpong, R.
J. Am. Chem. Soc. 2009, 131, 11187.
(6) Gruver, J. M.; West, S. P.; Collum, D. B.; Sarpong, R. J. Am.
Chem. Soc. 2010, 132, 13212.
(7) Nishimura, T.; Unni, A. K.; Yokoshima, S.; Fukuyama, T. J. Am.
Chem. Soc. 2011, 133, 418.
(8) (a) Ishiuchi, K.; Kubota, T.; Hoshino, T.; Obara, Y.; Nakahata,
N.; Kobayashi, J. Bioorg. Med. Chem. 2006, 14, 5995. (b) Ishiuchi, K.;
Kubota, T.; Ishiyama, H.; Hayashi, S.; Shibata, T.; Kobayashi, J.
Tetrahedron Lett. 2011, 52, 289. (c) Ishiuchi, K.; Kubota, T.; Ishiyama,
H.; Hayashi, S.; Shibata, T.; Mori, K.; Obara, Y.; Nakahata, N.;
Kobayashi, J. Bioorg. Med. Chem. 2011, 19, 749.
(26) Evans, D. A.; Evrard, D. A.; Rychnovsky, S. D.; Fruh, T.;
Whittingham, W. G.; Devries, K. M. Tetrahedron Lett. 1992, 33, 1189.
́
(27) Wendt, J. A.; Aube, J. Tetrahedron Lett. 1996, 37, 1531.
(28) Compound 27 was obtained as a mixture of diastereomers. One
of the diastereomers is the known compound lyconadin F, which was
isolated by Kobayashi and co-workers.8b
(29) The presence of oxygen caused autoxidation, giving lyconadin A
as the byproduct.
(30) Attempted oxidation of 13 with a variety of oxidants did not
give the desired enone 4. The different behaviors between 13 and 32
under oxidative conditions come from the state of the nitrogen atoms
in the compounds.
(9) Koshiba, T.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2009, 11,
5354.
(10) (a) Nilsson, B. L.; Overman, L. E.; Read de Alaniz, J.; Rohde, J.
M. J. Am. Chem. Soc. 2008, 130, 11297. (b) Altman, R. A.; Nilsson, B.
L.; Overman, L. E.; Read de Alaniz, J.; Rohde, J. M.; Taupin, V. J. Org.
Chem. 2010, 75, 7519.
(11) (a) Oppolzer, W.; Petrzilka, M. Helv. Chim. Acta 1978, 61, 2755.
(b) Nangia, A.; Prasuna, G. Synth. Commun. 1994, 24, 1989.
(12) (a) Kim, K. S.; Song, Y. H.; Lee, B. H.; Hahn, C. S. J. Org. Chem.
1986, 51, 404. (b) Anderson, J. C.; Blake, A. J.; Graham, J. P.; Wilson,
C. Org. Biomol. Chem. 2003, 1, 2877.
(13) The same type of aza-Prins reaction had been reported by
Overman and co-workers10 in their total synthesis of nankakurins, and
the importance of the amine for selective formation of the double
bond was also discussed.
(14) (a) Danheiser, R. L.; Morin, J. M.; Salaski, E. J. J. Am. Chem. Soc.
1985, 107, 8066. (b) Banwell, M. G.; Harvey, J. E.; Jolliffe, K. A. J.
Chem. Soc., Perkin Trans. 1 2001, 2002. (c) Stanislawski, P. C.; Willis,
A. C.; Banwell, M. G. Chem.Asian J. 2007, 2, 1127. (d) For a recent
review of electrocyclic ring-opening reactions of dibromocyclopro-
panes, see Halton, B.; Harvey, J. Synlett 2006, 1975.
(15) When the hydrogenolysis was performed in the presence of
Boc2O, hydrogenation of the double bond also proceeded.
(16) The structure of the major isomer was confirmed by X-ray
crystallography.
(17) For a recent review of the Pummerer rearrangement, see
(a) Smith, L. H. S.; Coote, S. C.; Sneddon, H. F.; Procter, D. J. Angew.
Chem., Int. Ed. 2010, 49, 5832. For recent applications of the
vinylogous Pummerer rearrangement, see (b) Ruano, J. L. G.;
́ ́
Aleman, J.; Aranda, M. T.; Arevalo, M. J.; Padwa, A. Org. Lett. 2005, 7,
19. (c) Feldman, K. S.; Fodor, M. D. J. Am. Chem. Soc. 2008, 130,
14964. (d) Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M.
Angew. Chem., Int. Ed. 2010, 49, 1103. (e) Halder, S.; Satyam, A.
Tetrahedron Lett. 2011, 52, 1179.
(18) Okazaki, R.; Watanabe, M.; Inagaki, Y.; Inamoto, N. Tetrahedron
Lett. 1978, 3439.
(19) The low yield of the reaction can be attributed to in situ
formation of an acidic oxime that may have caused protonation of the
alkenyllithium.
(20) (a) Dembech, P.; Ricci, A.; Seconi, G.; Taddei, M. Org. Synth.
1997, 74, 84. (b) Yoshida, M.; Kadokura, A.; Suzuki, K.; Minabe, M.
Tetrahedron 1979, 35, 2237.
(21) Reaction with peroxides did not proceed and gave instead the
protonated product.
E
dx.doi.org/10.1021/ja312065m | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX