values of Mn of the copolymers are all significantly higher. Perhaps
somewhat surprising given the greater number of branches in the
copolymers obtained, the values of Tm for experiments 39 and 40
are also somewhat higher than those observed for the products of
experiments 35 and 36, although the expected lack of crystallinity
is observed for experiments 41 and 42, with incorporations of 20
and 18%, respectively.
of ethylene and propylene. Instead, a heretofore unsuspected role
for catalyst activation by the ether linkage is suggested.
Acknowledgements
We gratefully acknowledge NSERC and Queen’s University for
funding of this research. We also thank Dr Francoise Sauriol
and Dr Emily Mitchell for assistance with the NMR experiments,
and Dr Bernd Keller for assistance with the mass spectrometry
experiments.
Thus addition of n-decyl methyl ether to the copolymerization
reactions does not result in decreases in either molecular weights or
degrees of incorporation, as conventional wisdom would presume,
but rather in the formation of copolymers of higher molecular
weights and containing greater incorporations of 1-hexene. As a
possible rationale of this behaviour, we note that while details of
the structure(s) of MAO are not known, it is generally believed to
exist in solution as an equilibrium mixture of very bulky anions.12b
Thus formation of a contact ion pair between a metallocenium
cation and a MAO anion, as in Fig. 9, will almost certainly result
in considerable steric hindrance to the approach of an alkene to the
active site on the metal. To illustrate this point, Fig. 9a shows, from
the perspective of an alkene approaching the position cis to the
Zr–Me group, the optimized (molecular mechanics) ball and stick
structure of the contact ion pair between the [Cp2ZrMe]+ cation
and the hexamethyl equivalent of the cage structure determined
experimentally for the [Al6O6(But)6Me]- anion.17 Fig. 9b shows the
analogous space filling structure with conventional van der Waals
radii for all atoms and, as is clear from the latter, even though
this particular MAO anion is one of the smaller known,12b the
metal ion is completely blocked from view and apparently not
very accessible to an alkene.
References
1 See, for example: (a) J.-Y. Dong and Y. Hu, Coord. Chem. Rev., 2006,
250, 47; (b) L. S. Boffa and B. M. Novak, Chem. Rev., 2000, 100, 1479;
(c) N. K. Boaen and M. A. Hillmyer, Chem. Soc. Rev., 2005, 34, 267;
(d) M. J. Yanjarappa and S. Sivaram, Prog. Polym. Sci., 2002, 27, 1347.
2 For useful reviews of metallocene-based polymerization systems, see:
(a) P. C. Mo¨hring and N. J. Coville, J. Organomet. Chem., 1994, 479,
1; (b) V. K. Gupta, S. Satish and I. S. Bhardwaj, J. Macromol. Sci.,
Rev. Macromol. Chem. Phys., 1994, C34, 439; (c) H. H. Brintzinger, D.
Fischer, R. Mu¨lhaupt, B. Rieger and R. M. Waymouth, Angew. Chem.,
Int. Ed. Engl., 1995, 34, 1143; (d) M. Bochmann, J. Chem. Soc., Dalton
Trans., 1996, 255; (e) W. Kaminsky and M. Arndt, Adv. Polym. Sci.,
1997, 127, 143; (f) J. C. W. Chien in Topics in Catalysis, T. J. Marks
and J. C. Stevens, Eds., Baltzer AG, Science Publishers, 1999, 7, 125;
(g) H. G. Alt and A. Ko¨ppl, Chem. Rev., 2000, 100, 1205; (h) G. W.
Coates, Chem. Rev., 2000, 100, 1223; (i) L. Resconi, L. Cavallo, A. Fait
and F. Piemontesi, Chem. Rev., 2000, 100, 1253; (j) K. Angermund, G.
Fink, V. R. Jensen and R. Kleinschmidt, Chem. Rev., 2000, 100, 1457;
(k) Metallocene-based Polyolefins, ed. J. Scheirs and W. Kaminsky, John
Wiley and Son, UK, 1999; (l) E. Y.-X. Chen and T. J. Marks, Chem.
Rev., 2000, 100, 1391.
3 See, for instance: (a) P. Lehmus, O. Ha¨rkki, R. Leino, H. J. G.
Luttikhedde, J. H. Na¨sman and J. V. Seppa¨la¨, Macromol. Chem. Phys.,
1998, 199, 1965; (b) M. Auer, R. Nicolas, A. Vesterinen, H. Luttikhedde
and C.-E. Wile´n, J. Polym. Sci., Part A: Polym. Chem., 2004, 42,
1350; (c) E. Kokko, E. P. Lehmus, R. Leino, H. J. G. Luttikhedde,
P. Ekholm, J. H. Na¨sman and J. V. Seppa¨la¨, Macromolecules, 2000,
33, 9200; (d) A. G. Simanke, G. B. Galland, L. L. Freitas, J. A. H.
Da Jornada, R. Quijada and R. S. Mauler, Macromol. Chem. Phys.,
2001, 202, 172; (e) M. Arnold, O. Henschke and J. Knorr, Macromol.
Chem. Phys., 1996, 197, 563; (f) M. Arnold, S. Bornemann, F. Ko¨ller,
T. J. Menke and J. Kressler, Macromol. Chem. Phys., 1998, 199, 2647;
(g) M. Arnold, S. Bornemann, B. Schade and O. Henschke, Kautschuk
Gummi Kunststoffe, 2001, 54, 300; (h) R. Quijada, J. L. Guevara, G. B.
Galland, F. M. Rabagliati and J. M. Lopez-Majada, Polymer, 2005, 46,
1567.
Given that ether oxygen atoms probably have higher affinity
for hard zirconocene cations than do alkene p electron pairs,
we tentatively hypothesize that a sterically rather unencumbered
methoxy group may be able to manoeuvre itself into the space
between a bulky MAO-based counter anion and the cationic
catalytic site on zirconium, eventually displacing the MAO anion
and binding to the metal. Once anion-cation separation has been
achieved, the olefinic ether can perhaps exchange ends (as in eqn
=
(4)) such that the C C bond coordinates and migratory insertion
can ensue. Such a process would not be possible with the non-
polar 1-hexene and would probably also be more difficult with the
much bulkier phenyl-containing ethers. Once polymerization has
begun, of course, the steric requirements of the growing chain can
presumably keep the MAO anion at a distance.
4 (a) P. Aaltonen and B. Lo¨fgren, Macromolecules, 1995, 28, 5353; (b) P.
Aaltonen, G. Fink, B. Lo¨fgren and J. Seppa¨la¨, Macromolecules, 1996,
29, 5255; (c) P. Aaltonen and B. Lo¨fgren, Eur. Polym. J., 1997, 33,
1187; (d) K. Hakala, B. Lo¨fgren and T. Helaja, Eur. Polym. J., 1998,
34, 1093; (e) L. Ahjopalo, B. Lo¨fgren, K. Hakala and L.-O. Pietila¨,
Eur. Polym. J., 1999, 35, 1519; (f) T. Helaja, K. Hakala, J. Helaja and
B. Lo¨fgren, J. Organomet. Chem., 1999, 579, 164; (g) K. Hakala, T.
Helaja and B. Lo¨fgren, J. Polym. Sci., Part A: Polym. Chem., 2000, 38,
1966; (h) S. Paavola, R. Uotila, B. Lo¨fgren and J. V. Seppa¨la¨, React.
Funct. Polym., 2004, 61, 53; (i) S. Paavola, B. Lo¨fgren and J. V. Seppa¨la¨,
Eur. Polym. J., 2005, 41, 2861; (j) U. Anttila, K. Hakala, T. Helaja, B.
Lofgren and J. Seppa¨la¨, J. Polym. Sci., Part A: Polym. Chem., 1999, 37,
3099.
Summary
Reported here are the results (a) of an NMR study of reactions of
the archetypal metallocene polymerization catalyst, Cp2ZrMe(m-
=
Me)B(C6F5)3, with the polar monomers CH2 CH(CH2)8OR (R =
Me, PhCH2, Ph3C, Me3Si, Ph3Si), protected versions of the readily
available, long chain polar monomer 9-decen-1-ol, and (b) of
an investigation of the copolymerization reactions of these same
polar monomers with ethylene and propylene catalyzed by the
rac-C2H4(Ind)2ZrCl2/MAO catalyst system. While increasing the
steric requirements of the groups R does decrease the appar-
ent abilities of the ethers to displace [BMe(C6F5)3]- from the
[Cp2ZrMe]+ cation, there is no correlation of size of R on the
degrees of incorporation of the polar monomers into copolymers
5 (a) C.-E. Wile´n and J. H. Na¨sman, Macromolecules, 1994, 27, 4051;
(b) C.-E. Wile´n, H. Luttikhedde, T. Hjertberg and J. H. Na¨sman,
Macromolecules, 1996, 29, 8569; (c) G. J. Jiang and H.-W. Chiu, Polym.
Prepr. (Am. Chem. Soc., Div. Polym. Chem.) , 1998, 39, 318; (d) J. M.
Hwu and G. J. Jiang, Polym. Prepr. (Am. Chem. Soc., Div. Polym.
Chem.), 1999, 40, 177; (e) M. M. Marques, S. G. Correia, J. R. Ascenso,
A. F. G. Ribeiro, P. T. Gomes, A. R. Dias, P. Foster, M. D. Rausch
and J. C. W. Chien, J. Polym. Sci., Part A: Polym. Chem., 1999, 37,
2457; (f) H. Hagihara, M. Murata and T. Uozumi, Macromol. Rapid
Commun., 2001, 22, 353; (g) J.-I. Imuta, Y. Toda and N. Kashiwa,
Chem. Lett., 2001, 710; (h) A. Kaya, L. Jakisch, H. Komber, D. Voigt,
8876 | Dalton Trans., 2009, 8864–8877
This journal is
The Royal Society of Chemistry 2009
©